

SEAMO

Southeast Asian Mathematical Olympiads

SAMPLE

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED.

STUDENT'S NAME:

Read the instructions on the **ANSWER SHEET** and fill in your **NAME, SCHOOL** and **OTHER INFORMATION**.

Use a 2B or B pencil.

Do **NOT** use a pen

Rub out any mistakes completely.

You MUST record your answers on the ANSWER SHEET.

SENIOR

Mark only **ONE** answer for each question.

Marks are **NOT** deducted for incorrect answers.

SECTION A

Use the information provided to choose the **BEST** answer from the five possible options.

On your **ANSWER SHEET** fill in the oval that matches your answer.

SECTION B

On your **ANSWER SHEET** fill in your answer within the box provided.

You are **NOT** allowed to use a calculator.

1. Evaluate.

$$\frac{1+3+5+\cdots\cdots+2013+2015}{2+4+6+\cdots\cdots+2014+2016}$$

- (A) $\frac{2016}{2018}$
- (B) $\frac{1004}{1005}$
- (C) $\frac{1008}{1009}$
- (D) $\frac{1002}{1003}$
- (E) $\frac{2015}{2017}$
- 2. In the diagram shown below, ABCD is a square with NC = 2DN. M is a point on AD, such that $\angle NMB = \angle MBC$. Find $\tan \angle ABM$.

- (A) $\frac{2}{3}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{3}$
- (D) $\frac{1}{4}$
- (E) $\frac{1}{5}$

3. There is a real root, $0^{\circ} \ll \alpha \ll 180^{\circ}$, for $(3 \sin a)x^2 - (4 \cos a)x + 2 = 0$, find the range of $\sin a$.

(A)
$$0 \ll \sin a \ll \frac{1}{2}$$

(B)
$$0 \ll \sin a \ll \frac{\sqrt{3}}{2}$$

(C)
$$0 \ll \sin a \ll 1$$

(D)
$$\frac{1}{2} \ll \sin a \ll \frac{\sqrt{3}}{2}$$

(E)
$$\frac{1}{2} \ll \sin a \ll 1$$

4. An equilateral triangle in inscribed in a circle. When the radius is r, the area of the triangle is greatest when its height is

- (A) 1.2r
- (B) 1.3r
- (C) 1.4r
- (D) 1.5r
- (E) 1.6r

QUESTION 5 IS FREE RESPONSE

Write your answer in the boxes provided on the ANSWER SHEET and fill in the ovals that match your answer.

5. In the diagram below, r is the radius of the small circle with center A. ABCD is a rectangle with $AB = 5 \ cm$ and $BC = 12 \ cm$. Find the range of values of r.

END OF PAPER

QUESTION	ANSWER	SOLUTION	TOPIC	DIFFICULTY
1	С	$\frac{1+3+5+\cdots+2015}{2+4+6+\cdots+2016}$ $\Rightarrow \frac{\frac{(1+2015)\times1008}{2}}{\frac{(2+2016)\times1008}{2}} = \frac{2016}{2018}$ $\Rightarrow \frac{1008}{1009}$	Even and Odd Numbers	Easy
2	E	Let $AB \equiv 3, \because NC \equiv 2DN$ $\therefore DN \equiv 1, NC \equiv 2$ $\because MD // CG$ $\therefore \Delta MDN \sim \Delta GCN$ $\frac{MP}{CG} = \frac{MN}{NG} = \frac{DN}{NC} = \frac{1}{2}$ Let $MD = k, CG = 2k$, $MN = \sqrt{1 + k^2}$ $NG = 2\sqrt{1 + k^2}$ $\therefore MG = 3\sqrt{1 + k^2}$ $\therefore \angle NMB = \angle MBC$, $\therefore GM = GB$, $3\sqrt{1 + k^2} = 2k + 3 \Rightarrow k = \frac{12}{5}$ $\therefore \tan \angle ABM = \frac{AM}{AB}$ $= \frac{3 - \frac{12}{5}}{3}$ $= \frac{1}{5}$	Trigo- nometry	Medium

3	A	For $\sin a \neq 0$ Then $16 \cos^2 a - 4(3 \sin a) \times 2 \ge 0$, $16 (1 - \sin^2 a) - 24 \sin^2 a \ge 0$, $2 \sin^2 a + 3 \sin a - 2 \le 0$ $\therefore (\sin a + 2)(2 \sin a - 1) \le 0$ $\sin a \le \frac{1}{2}$	Trigo- nometric Identities	Medium
4	D	Let the base be $2x$ $h = AO + OD$ $= r + \sqrt{r^2 - x^2}$	Pythago-rean Theorem	Medium/Hard

5	1 < r < 8	Since $ABCD$ is a rectangle, AB = 5 and $BC = 12AC = \sqrt{5^2 + 12^2}= 135 < R < 13\therefore R + r = 13R = 13 - r\therefore 1 < r < 8$	Pythago- rean Theorem	Medium/Hard
---	-----------	---	-----------------------------	-------------

Level of difficulty refers to the expected level of difficulty for the question.		
Easy	more than 75% of candidates will choose the correct option	
Medium	about 50–75% of candidates will choose the correct option	
Medium/Hard	about 25–50% of candidates will choose the correct option	
Hard	less than 25% of candidates will choose the correct option	