Tag: hàm số bậc hai

  • XÁC ĐỊNH HỆ SỐ HÀM SỐ BẬC 2 BẰNG MÁY TÍNH CASIO

    XÁC ĐỊNH HỆ SỐ HÀM SỐ BẬC 2 BẰNG MÁY TÍNH CASIO

    XÁC ĐỊNH HỆ SỐ HÀM SỐ BẬC 2 BẰNG MÁY TÍNH CASIO

    Hướng dẫn cách tìm các hệ số $a,b,c$ của hàm số hậc hai $y=ax^2+bx+c$ bằng máy tính biết parabol đi qua 3 điểm có tọa độ cụ thể cho trước.

    Xem thêm: Đề thi học kì 1 Toán 10 Xuân Trường B năm 2020

    Phương pháp xác định hệ số hàm số bậc 2 bằng máy tính

    https://www.youtube.com/watch?v=q_sXAtPfm3M&feature=emb_logo

    Phương pháp nhanh lập phương trình parabol đi qua ba điểm bằng máy tính CASIO fx 580 VNX hoặc máy tính VINACAL

    • Toán 10 lập phương trình hàm số bậc hai biết parabol đi qua ba điem có tọa độ cho trước. (Tìm phương trình parabol đi qua 3 điểm bằng máy tính cầm tay CASIO, VINACAL)
    • Xác định tìm phương trình của parabol biết tọa độ đỉnh, trục đối xứng và tọa độ một điểm đi qua.
    • Hướng dẫn giải đề thi thử đại học THPTQG môn toán năm 2021 trường Lương Thế Vinh Hà Nội và Trần Phú Hà Tĩnh
    • Một vật chuyển động trong 4 giờ với vận tốc v (km/ h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(1;1) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s mà vật đi được trong 4 giờ kể từ lúc xuất phát.
    • Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là AB = 8m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parbol và hai đỉnh P,Q nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho 1 m2 cần số tiền mua hoa là 200.000 đồng cho 1 m2 . Biết MN = 4m,MQ = 6m. Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?
      • A. 3.735.300 đồng.
      • B. 3.437.300 đồng.
      • C. 3.734.300 đồng.
      • D. 3.733.300 đồng.

    Ở bài viết xác định nhanh các hệ số hàm số bậc 2 trên casio fx 580vnx ta đã biết cách sử dụng máy tính cầm tay CASIO fx 580VNX để tìm các hệ số của một hàm số bậc 2, mời các bạn cùng thực hành thao tác trên máy tính với bài toán tương tự trích trong một đề thi học kỳ.

  • Đề thi giữa học kỳ I Toán 10 Xuân Trường B năm 2017

    Đề thi giữa học kỳ I Toán 10 Xuân Trường B năm 2017

    Đề thi giữa học kỳ I Toán 10 Xuân Trường B năm 2017

    O2 Education xin giới thiệu đề thi 8 tuần kỳ 1 (đề thi giữa học kỳ I Toán 10), năm học 2017 – 2018 của trường Xuân Trường B – Nam Định.

    Xem thêm các dạng toán ôn tập thi giữa học kì 1 lớp 10:

    Đề thi giữa học kỳ I Toán 10: TRẮC NGHIỆM (5,0 điểm)

    Câu 1: Cho tam giác $ ABC$ , gọi $ M$ là trung điểm của $ BC$ và $ G$ là trọng tâm của tam giác $ ABC$. Đẳng thức vectơ nào sau đây là đúng?
    A. $ \overrightarrow{AB}+\overrightarrow{AC}=\frac{3}{2}\overrightarrow{AG}$.
    B. $ 2\overrightarrow{AM}=3\overrightarrow{AG}$.
    C. $ \overrightarrow{AM}=2\overrightarrow{AG}$.
    D. $ \overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{GM}$.

    Câu 2: Cho mệnh đề “$ \forall x\in \mathbb{R},\,\,{{x}^{2}}+2>0$ ”. Mệnh đề phủ định của mệnh đề đã cho là
    A. $ \forall x\in \mathbb{R},\,\,{{x}^{2}}+2\le 0.$
    B. $ \exists x\in \mathbb{R},\,\,{{x}^{2}}+2<0.$
    C. $ \exists x\in \mathbb{R},\,\,{{x}^{2}}+2\le 0.$
    D. $ \forall x\in \mathbb{R},\,\,{{x}^{2}}+2<0.$

    Câu 3: Xác định hàm số bậc nhất $ y=f\left( x \right)$ thoả mãn $ f\left( -1 \right)=2$ và $ f\left( 2 \right)=-3$.
    A. $ y=\frac{-5x+1}{3}$.
    B. $ y=\frac{-x+5}{3}$.
    C. $ y\text{ }=-3×1$.
    D. $ y=2x+4$.

    Câu 4: Cho hai tập hợp $ A=\left\{ x\in \mathbb{R}\text{ }\left| \text{ }\left| x-1 \right|\le 2 \right. \right\}$ và $ B=\left( 0;+\infty \right)$. Tìm hợp của hai tập hợp $ A$ và $ B$.
    A. $ A\cup B=\left( -1;+\infty \right).$
    B. $ A\cup B=\left[ -1;+\infty \right).$
    C. $ A\cup B=\left( -2;+\infty \right).$
    D. $ A\cup B=\left[ -2;+\infty \right).$

    Câu 5: Cho tam giác $ ABC$ đều cạnh $ a$. Tính $ \left| \overrightarrow{AB}+\overrightarrow{AC} \right|$ theo $ a$.
    A. $ \left| \overrightarrow{AB}+\overrightarrow{AC} \right|=\frac{\sqrt{3}}{2}a$.
    B. $ \left| \overrightarrow{AB}+\overrightarrow{AC} \right|=2a$.
    C. $ \left| \overrightarrow{AB}+\overrightarrow{AC} \right|=a\sqrt{3}$.
    D. $ \left| \overrightarrow{AB}+\overrightarrow{AC} \right|=a$.

    Câu 6: Trong mặt phẳng tọa độ $ Oxy$ , cho $ A\left( 5;2 \right),\text{ }B\left( 10;8 \right)$. Tọa độ của vec tơ $ \overrightarrow{AB}$ là:
    A. $ \left( 5;6 \right)$.
    B. $ \left( 2;4 \right)$.
    C. $ \left( 15;10 \right)$.
    D. $ \left( 50;6 \right)$.

    Câu 7: Trong mặt phẳng tọa độ $ Oxy$ , cho $ A\left( -4;2 \right),\text{ }B\left( -2;6 \right)$. Tìm điểm $ M$ trên trục $ Oy$ sao cho ba điểm $ A,\text{ }B,\ M$ thẳng hàng.
    A. $ M\left( 0;8 \right)$.
    B. $ M\left( 0;-10 \right)$.
    C. $ M\left( 0;-8 \right)$.
    D. $ M\left( 0;10 \right)$.

    Câu 8: Tìm tất cả các giá trị của tham số $ m$ để hàm số $ y=-{{x}^{2}}+2\left| m+1 \right|x-3$ nghịch biến trên$ \left( 2;+\infty \right).$
    A. $ \left[ \begin{matrix} m\le -3 \\ m\ge 1 \\ \end{matrix} \right.\ .$
    B. $ -3<m<1.$
    C. $ -3\le m\le 1.$
    D. $ \left[ \begin{matrix} m<-3 \\ m>1 \\ \end{matrix} \right.\ .$

    Câu 9: Tìm tất cả các giá trị của tham số $ m$ để hàm số $ y=\left( 1-{{m}^{2}} \right)x+3m-1$ đồng biến trên $ \mathbb{R}$.
    A. $ \left[ \begin{matrix} m\le -1 \\ m\ge 1 \\ \end{matrix} \right.$.
    B. $ \left[ \begin{matrix} m<-1 \\ m>1 \\ \end{matrix} \right.$.
    C. $ -1<m<1.$
    D. $ -1\le m\le 1.$

    Câu 10: Cho hai tập hợp $ A=\left\{ 2;4;6;9 \right\}$ và $ B=\left\{ 1;2;3;4 \right\}$. Tìm hiệu của hai tập hợp $ A$ và $ B$.
    A. $ A\backslash B=\left\{ 1;3;6;9 \right\}.$
    B. $ A\backslash B=\varnothing .$
    C. $ A\backslash B=\left\{ 2;4 \right\}$.
    D. $ A\backslash B=\left\{ 6;9 \right\}.$

    Câu 11: Cho tứ giác $ ABCD$. Điểm $ M$ thuộc đoạn $ AB$ , $ N$ thuộc đoạn $ CD$ sao cho $ \frac{MA}{MB}=\frac{ND}{NC}=4$. Phân tích $ \overrightarrow{MN}$ theo hai vectơ $ \overrightarrow{AD}$ và $ \overrightarrow{BC}$ ta được kết quả là :
    A. $ \overrightarrow{MN}=\frac{1}{4}\overrightarrow{AD}+\frac{3}{4}\overrightarrow{BC}$.
    B. $ \overrightarrow{MN}=\frac{1}{4}\overrightarrow{AD}-\frac{3}{4}\overrightarrow{BC}$.
    C. $ \overrightarrow{MN}=\frac{1}{5}\overrightarrow{AD}+\frac{4}{5}\overrightarrow{BC}$.
    D. $ \overrightarrow{MN}=\frac{1}{5}\overrightarrow{AD}-\frac{4}{5}\overrightarrow{BC}$.

    Câu 12: Hàm số nào dưới đây có bảng biến thiên như hình vẽ?

    đề thi giữa học kì 1 toán 10 Xuân Trường BA. $ y=-{{x}^{2}}+4x-3.$
    B. $ y=-{{x}^{2}}+2x+1.$
    C. $ y={{x}^{2}}-4x+5.$
    D. $ y={{x}^{2}}-2x+1.$

    Câu 13: Cho các hàm số $ y=f\left( x \right)=\left| x-1 \right|-\left| x+1 \right|,\text{ }y=g\left( x \right)=-\left| x \right|$. Khẳng định nào sau đây là đúng?
    A. $ y=f\left( x \right)$ là hàm số lẻ, $ y=g\left( x \right)$ là hàm số lẻ.
    B. $ y=f\left( x \right)$ là hàm số lẻ, $ y=g\left( x \right)$ là hàm số chẵn.
    C. $ y=f\left( x \right)$ là hàm số chẵn, $ y=g\left( x \right)$ là hàm số chẵn.
    D. $ y=f\left( x \right)$ là hàm số chẵn, $ y=g\left( x \right)$ là hàm số lẻ.

    Câu 14: Hàm số $ y=2{{x}^{2}}-4x+1$ đồng biến trên khoảng nào?
    A. $ \left( -\infty ;-1 \right).$
    B. $ \left( -\infty ;1 \right).$
    C. $ \left( -1;+\infty \right).$
    D. $ \left( 1;+\infty \right).$

    Câu 15: Cho hình bình hành $ ABCD$. Trong các khẳng định sau, khẳng định nào sai ?
    A. $ \overrightarrow{AB}=\overrightarrow{DC}$.
    B. $ \left| \overrightarrow{AD} \right|=\left| \overrightarrow{CB} \right|$.
    C. $ \overrightarrow{AD}=\overrightarrow{CB}$.
    D. $ \left| \overrightarrow{AB} \right|=\left| \overrightarrow{CD} \right|$.

    Câu 16: Cho tập $ A=\left\{ x\in \mathbb{Z}|-1\le x\le 5 \right\}$. Số phần tử của tập $ A$ là
    A. $ 8$
    B. $ 7$.
    C. $ 5$.
    D. $ 6$.

    Câu 17: Cho hai tập hợp $ A=\left( -2;2 \right],\text{ }B=\left[ 1;3 \right)$. Tìm giao của hai tập hợp $ A$ và $ B$.
    A. $ A\cap B=\left( 1;2 \right).$
    B. $ A\cap B=\left[ 1;2 \right).$
    C. $ A\cap B=\left( 1;2 \right].$
    D. $ A\cap B=\left[ 1;2 \right].$

    Câu 18: Cho hàm số $ y={{x}^{3}}-3x+2$. Điểm nào sau đây thuộc đồ thị hàm số đã cho?
    A. $ \left( -2;0 \right)$.
    B. $ \left( 1;1 \right)$.
    C. $ \left( -2;-12 \right)$.
    D. $ \left( 1;-1 \right)$.

    Câu 19: Tập xác định của hàm số $ y=\frac{x}{x+1}-\sqrt{3-x}$ là:
    A. $ \left( -\infty ;3 \right]\backslash \left\{ -1 \right\}$.
    B. $ \left( -\infty ;3 \right)\backslash \left\{ -1 \right\}$.
    C. $ \left( -\infty ;3 \right]$.
    D. $ \mathbb{R}\backslash \left\{ -1 \right\}$.

    Câu 20: Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    de thi gk1 toan 10 xuan truong b nam 2017 do thi ham so
    A. $ y=\left| x \right|-1$.
    B. $ y=-\left| x+1 \right|$.
    C. $ y=-\left| x-1 \right|$.
    D. $ y=1-\left| x \right|$.

    Câu 21: Điều kiện nào dưới đây là điều kiện cần và đủ để điểm $ O$ là trung điểm của đoạn thẳng $ AB$.
    A. $ \overrightarrow{OA}=\overrightarrow{OB}$.
    B. $ \overrightarrow{OA}+\overrightarrow{OB}=\vec{0}$.
    C. $ \overrightarrow{AO}=\overrightarrow{BO}$.
    D. $ OA=OB$.

    Câu 22: Cho ba điểm phân biệt $ A,\text{ }B,\text{ }C$. Đẳng thức nào sau đây là đúng?
    A. $ \overrightarrow{AB}=\overrightarrow{BC}-\overrightarrow{AC}$.
    B. $ \overrightarrow{AB}=\overrightarrow{CB}-\overrightarrow{CA}$.
    C. $ \overrightarrow{AB}=\overrightarrow{CA}-\overrightarrow{CB}$.
    D. $ \overrightarrow{AB}=\overrightarrow{BC}-\overrightarrow{CA}$.

    Câu 23: Trong mặt phẳng tọa độ $ Oxy$ , cho $ A\left( -2;2 \right)\text{, }B\left( 3;5 \right)$. Gọi $ C\left( a;b \right)$ là điểm sao cho tam giác $ ABC$ có trọng tâm là gốc tọa độ $ O$. Tính $ T=a+b$
    A. $ T=-8$.
    B. $ T=6$.
    C. $ T=0$.
    D. $ T=-4$.

    Câu 24: Cho hàm số $ y=a{{x}^{2}}+bx+c$ có đồ thị là parabol trong hình vẽ. Khẳng định nào sau đây là đúng?

    de thi gk1 toan 10 xuan truong b nam 2017 parabol
    A. $ a>0;\text{ }b>0;\text{ }c>0.$
    B. $ a>0;\text{ }b<0;\text{ }c>0.$
    C. $ a>0;\text{ }b<0;\text{ }c<0.$
    D. $ a>0;\text{ }b>0;\text{ }c<0.$

    Câu 25: Cho điểm $ C$ thuộc đoạn $ AB$ sao cho $ C$ khác $ A$ và $ B$. Khẳng định nào sau đây là đúng ?
    A. $ \overrightarrow{AC}$ và $ \overrightarrow{BC}$ ngược hướng.
    B. $ \overrightarrow{AC}$ và $ \overrightarrow{BC}$ cùng hướng.
    C. $ \overrightarrow{AB}$ và $ \overrightarrow{BC}$ cùng hướng.
    D. $ \overrightarrow{AB}$ và $ \overrightarrow{CB}$ ngược hướng.

    Đề thi giữa học kỳ I Toán 10: TỰ LUẬN (5,0 điểm)

    Câu 1 (1,5 điểm). Cho hàm số $y=\left\{ \begin{matrix}   x-2\text{ khi }x\ge 1  \\   -x\text{ khi }x<1  \\ \end{matrix} \right.$.

         a) Tìm tập xác định của hàm số.

         b) Vẽ đồ thị và lập bảng biến thiên của hàm số đã cho.

    Câu 2 (1,5 điểm). Xác định parabol $\left( P \right): y=a{{x}^{2}}+bx-1$ biết rằng parabol đi qua $M\left( -1;-7 \right)$ và có trục đối xứng là đường thẳng $x=1$.  

    Câu 3 (1,5 điểm). Trong mặt phẳng tọa độ $Oxy$, cho ba điểm $A\left( 1;2 \right),\text{ }B\left( -3;-2 \right),\text{ }C\left( -4;1 \right)$.

         a) Chứng minh rằng: Hai vec tơ $\overrightarrow{AB}$ và $\overrightarrow{AC}$ không cùng phương.

         b) Tìm tọa độ điểm $D$ sao cho tứ giác $ABCD$ là hình bình hành.   

    Câu 4 (0,5 điểm). Cho tam giác $ABC$ vuông tại $A$ có $AB=a,\text{ }AC=b$ $\left( a,\text{ }b>0 \right)$. Xét các điểm $E,\text{ }F,\text{ }M,\text{ }N$ thay đổi sao cho tứ giác $AEBF$ và tứ giác $AMCN$ là các hình bình hành. Tìm giá trị nhỏ nhất của $T=EM+FN$.

    ————-HẾT————-