Tag: hàm số lẻ

  • Toán 10 – Khái niệm hàm số. Hàm số là gì?

    Toán 10 – Khái niệm hàm số. Hàm số là gì?

    Toán 10 – Khái niệm hàm số lớp 10. Hàm số là gì?

    1. Hàm số là gì?

    Hàm số chính là các quy tắc áp dụng trên các số. Nếu một đại lượng $y$ phụ thuộc vào một đại lượng thay đổi $x$ mà với một giá trị của $x$ ta luôn xác định được một và chỉ một giá trị tương ứng của $y$ thì $y$ được gọi là hàm số của $x$, và $x$ gọi là biến số. Nói chung hàm số xuất hiện khi có một đại lượng số nào đó phụ thuộc vào một đại lượng số khác. Các em đã được làm quen với hàm số từ lớp 7, lớp 9.

    1.1. Khái niệm hàm số

    Định nghĩa hàm số: Cho $ \mathbb{D} $ là tập con khác rỗng của $ \mathbb{R}. $ Hàm số $ f $ xác định trên $ \mathbb{D} $ là một quy tắc cho tương ứng mỗi số $ x\in \mathbb{D} $ với một và chỉ một số thực $ y $ gọi là giá trị của hàm số $ f $ tại $ x, $ kí hiệu $ y=f(x). $

    Tập $ \mathbb{D} $ gọi là tập xác định (miền xác định, domain), $ x $ là đối số (biến số) của hàm số $ f, $ ta viết
    \begin{align*}
    f: \mathbb{D}& \longrightarrow \mathbb{R}\\
    x\, &\longmapsto y=f(x)
    \end{align*}

    $ T=\left\{y=f(x)|x\in \mathbb{D} \right\} $ được gọi là tập giá trị hoặc miền giá trị của hàm số.

    1.2. Cách cho một hàm số

    Một hàm số có thể được cho bằng bốn cách: Mô tả bằng lời, cho bằng bảng giá trị, cho bằng đồ thị, hoặc cho bằng công thức tường minh.

    Khi một hàm số được cho bởi công thức $ y=f(x) $ thì tập xác định của nó là tập hợp tất cả các số thực $ x $ sao cho biểu thức $ f(x) $ có nghĩa, tức là tập tất cả các giá trị của biến số $x$ mà có thể tính được giá trị $y$ tương ứng của hàm số (tính được giá trị $ f(x) $).

    1.3. Đồ thị của hàm số

    Đồ thị của hàm số bậc hai
    Đồ thị của hàm số bậc hai

    Một trong những cách thường dùng nhất để minh họa một hàm số là sử dụng đồ thị. Nếu $ f $ là một hàm số có tập xác định $ \mathbb{D} $ thì đồ thị của nó là tập hợp $ (G) $ các điểm có tọa độ $\left( x;f(x) \right)$ với $x \in \mathbb{D}$.

    Từ đó, điểm $M\left( {{x}_{0}};{{y}_{0}} \right)\in (G) $khi và chỉ khi ${{x}_{0}}\in \mathbb{D}$ và ${{y}_{0}}=f({{x}_{0}})$. Mỗi hàm số có một đồ thị duy nhất và ngược lại đồng thời qua đồ thị của một hàm số, ta có thể nhận biết được hầu hết các tính chất của hàm số đó.

    1.4. Hàm số đồng biến, nghịch biến

    Cho hàm số $ y = f(x) $ xác định trên khoảng $ (a,b)\subset \mathbb{R}. $

    • Hàm số $ f $ gọi là đồng biến (tăng) trên khoảng $ (a,b) $ nếu với mọi $ x_1,x_2\in (a,b) $ mà $ x_1<x_2 $ thì $ f(x_1)<f(x_2). $
    • Hàm số $ f $ gọi là nghịch biến (giảm) trên khoảng $ (a,b) $ nếu với mọi $ x_1,x_2\in (a,b) $ mà $ x_1<x_2 $ thì $ f(x_1)>f(x_2). $
    • Hàm số $ f $ gọi là không đổi (hàm số hằng) trên khoảng $ (a,b) $ nếu  $f(x)=const$ với mọi $ x\in (a,b) $.

    Thông thường, để xét sự biến thiên của hàm số trên khoảng $ (a,b) $ ta xét tỉ số $ \frac{f(x_2)-f(x_1)}{x_2-x_1} $ với $ x_1\ne x_2\in (a,b). $

    1.5. Tính chẵn lẻ của hàm số

    Cho hàm số $ y=f(x) $ xác định trên miền $ \mathbb{D}. $

    • Hàm số $ f(x) $ được gọi là hàm số chẵn nếu với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathbb{D} $ và $ f(-x)=f(x) $
    • Hàm số $ f(x) $ được gọi là hàm số lẻ nếu với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathbb{D} $ và $ f(-x)=f(x) $

    Chú ý, đồ thị hàm số chẵn nhận trục tung làm trục đối xứng; đồ thị hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

    2. Các dạng toán hàm số lớp 10

    2.1. Tìm tập xác định của hàm số

    Xem chi tiết dạng toán tìm TXĐ tại đây Toán 10 – Tìm tập xác định của hàm số

    2.2. Xét tính chẵn lẻ của hàm số lớp 10

    Xem bài chi tiết tại đây Xét tính chẵn lẻ của hàm số lớp 10

    2.3. Xét tính đồng biến nghịch biến của hàm số

    Các em học sinh xem tại đây Toán 10 – Xét sự biến thiên của hàm số

    2.4. Tìm tập giá trị của hàm số

    2.5. Vẽ đồ thị hàm số

  • Xét tính chẵn lẻ của hàm số lớp 10

    Xét tính chẵn lẻ của hàm số lớp 10

    Xét tính chẵn lẻ của hàm số lớp 10

    Xem thêm:

    1. Hàm số chẵn hàm số lẻ là gì?

    Cho hàm số $ y=f(x) $ xác định trên miền $ \mathcal{D}. $

    • Hàm số $ f(x) $ được gọi là hàm số chẵn nếu nó thỏa mãn 2 điều kiện sau:
      • Với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathcal{D} $
      • $ f(-x)=f(x), \,\forall x\in \mathcal{D} $
    • Hàm số $ f(x) $ được gọi là hàm số lẻ nếu nếu nó thỏa mãn 2 điều kiện sau:
      • Với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathcal{D} $
      • $ f(-x)=-f(x), \,\forall x\in \mathcal{D} $

    Chú ý:

    • Một tập $\mathcal{D}$ thỏa mãn điều kiện $\forall x\in \mathbb{D} $ thì $ -x\in \mathcal{D} $ được gọi là một tập đối xứng.
    • Đồ thị hàm số chẵn nhận trục tung làm trục đối xứng (ví dụ hàm số $y=x^2$ là hàm số chẵn); đồ thị hàm số lẻ nhận gốc tọa độ làm tâm đối xứng (ví dụ hàm số $y=x$ là hàm số lẻ).

    xét tính chẵn lẻ của hàm số, đồ thị hàm số chẵn hàm số lẻ

    • Một hàm số có thể không chẵn cũng không lẻ.

    đồ thị hàm số không chẵn không lẻ
    Đồ thị của một hàm số không chẵn không lẻ

    2. Các ví dụ Xét tính chẵn lẻ của hàm số lớp 10

    Cách xét tính chẵn lẻ của hàm số được thực hiện qua 3 bước sau:

    1. Tìm tập xác định của hàm số.
    2. Kiểm tra
      • Nếu $\forall x\in \mathbb{D} \Rightarrow -x\in \mathbb{D}$ thì chuyển qua bước tiếp theo.
      • Nếu $ \exists x_0\in \mathbb{D} $ mà $ -x_0\not\in \mathbb{D}$ thì kết luận hàm không chẵn cũng không lẻ.
    3. Tính $f(-x)$ và so sánh với $f(x)$ để kết luận:
      • Nếu $f(-x) = f(x)$ thì kết luận hàm số là chẵn.
      • Nếu $f(-x)=-f(x)$ thì kết luận hàm số là lẻ.
      • Nếu tồn tại một giá trị  $ x_0\in \mathbb{D}$ mà $f(-x_0)\ne \pm f(x_0)$ thì kết luận hàm số không chẵn cũng không lẻ.

    Ví dụ 1. Xét tính chẵn lẻ của hàm số $y = f(x) = x^3 + x$.

    Lời giải. 

    • TXĐ: $\mathcal{D}=\mathbb{R}$
    • Ta có, với mọi $x\in \mathbb{D} $ thì cũng có $-x\in \mathbb{D}$ (điều kiện thứ nhất được thỏa mãn)
    • Với mọi  $x\in \mathbb{D} $ ta có $$f(-x) = (-x)^3 + (-x) = -( x^3 + x)= -f(x).$$ Kết luận: Hàm số $y = f(x) = x^3 + x$ là hàm số lẻ.

    Ví dụ 2. Xét tính chẵn lẻ của hàm số $f(x) = x^4 + 2$.

    Lời giải.

    • TXĐ: $\mathcal{D}=\mathbb{R}$
    • Ta có, với mọi $x\in \mathbb{D} $ thì cũng có $-x\in \mathbb{D}$ (điều kiện thứ nhất được thỏa mãn).
    • Với mọi  $x\in \mathbb{D} $ ta có $$f(-x) = (-x)^4+2 = x^4+2=f(x).$$ Suy ra, hàm sốđã cho là hàm số chẵn.

    Ví dụ 3. Xét tính chẵn lẻ của hàm số $y=\sqrt{x+1}+2$.

    Lời giải.

    • Điều kiện xác định: $$x+1 \geqslant 0 \Leftrightarrow x \geqslant -1$$ Suy ra, TXĐ: $\mathcal{D}= [-1; +\infty)$$
    • Tập $\mathcal{D} $ này không thỏa mãn điều kiện $\forall x\in \mathbb{D} \Rightarrow -x\in \mathbb{D}$. Thật vậy, xét số $x_0=5$ thuộc vào $\mathcal{D}$ nhưng $-x_0$ là $-5$ lại không thuộc $\mathcal{D}$.
    • Kết luận: Hàm số đã cho không chẵn, không lẻ.

    Ví dụ 4. Xét tính chẵn lẻ của hàm số $ y=\sqrt{x+5}+\sqrt{5-x}$.

    Hướng dẫn.

    • Tìm được tập xác định $\mathcal{D} = [-5;5]$.
    • Với mọi $x \in  [-5;5]$ ta có $-x \in [-5;5]$.
    • Có $f(-x)=\sqrt{(-x)+5}+\sqrt{5-(-x)}=\sqrt{x+5}+\sqrt{5-x}=f(x)$.
    • Kết luận: Hàm số đã cho là hàm số chẵn.

    Ví dụ 5. Xét tính chẵn lẻ của hàm số $ y=\sqrt{x+5}+\frac{1}{\sqrt{5-x}}$.

    Hướng dẫn.

    • Tìm được tập xác định $\mathcal{D} = [-5;5)$.
    • Với mọi $x \in  [-5;5]$ thì ta không có $-x \in [-5;5]$. Thật vậy, xét một số $x_0=-5\in [-5;5)$ nhưng $-x_0=-(-5)=5$ lại không thuộc $[-5;5)$.
    • Kết luận: Hàm số đã cho là hàm số không chẵn không lẻ.

    3. Bài tập Xét tính chẵn lẻ của hàm số lớp 10

    Bài 1. Hàm số sau là hàm số chẵn hay hàm số lẻ, vì sao”

    1. $ f(x)=x+\frac{1}{x}$
    2. $ f(x)=\frac{1}{|x|+1}+x^2$
    3. $ f(x)=\sqrt{x-3}+5$
    4. $ f(x)=x^4+x^6+|x|$
    5. $ f(x)=|x-2|$

    Bài 2. Xác định tính chẵn lẻ của các hàm số sau:

    1. $f\left( x \right)=\frac{{{x}^{3}}+5x}{{{x}^{2}}+4}.$
    2. $f\left( x \right)=\frac{{{x}^{2}}+5}{{{x}^{2}}-1}.$
    3. $f\left( x \right)=\sqrt{x+1}-\sqrt{1-x}.$
    4. $f\left( x \right)=\frac{x-5}{x-1}.$
    5. $f\left( x \right)=3{{x}^{2}}-2x+1.$
    6. $f\left( x \right)=\frac{{{x}^{3}}}{\left| x \right|-1}.$
    7. $f(x)=\frac{\left| x-1 \right|+\left| x+1 \right|}{\left| 2x-1 \right|+\left| 2x+1 \right|}.$
    8. $f(x)=\frac{\left| x+2 \right|+\left| x-2 \right|}{\left| x-1 \right|-\left| x+1 \right|}$

    Bài 3. Xét tính chẵn lẻ của hàm số $$ f(x)=\frac{2x}{x^2-4}$$

    Bài 4. Xét tính chẵn lẻ của hàm số $$ f(x)=\frac{1}{\sqrt{x^2-x+1}-\sqrt{x^2+x+1}} $$

    Bài 5. Xét tính chẵn lẻ của hàm số $$ f(x)=\frac{x^2}{x^2-3x+2} $$

    Bài 6. Xét tính chẵn lẻ của hàm số $$ f(x)=\sqrt{2+x}-\sqrt{2-x} $$

    Bài 7. Xét tính chẵn lẻ của hàm số $$ f(x)=\dfrac{x}{\sqrt{1-x}-\sqrt{1+x}} $$

    Bài 8. Cho hàm số $y=f\left( x \right)$, $y=g\left( x \right)$ có cùng tập xác định $D$. Chứng minh rằng:

    • Nếu hai hàm số trên lẻ thì hàm số $y=f\left( x \right)+g\left( x \right)$ là hàm số lẻ.
    • Nếu hai hàm số trên một chẵn, một lẻ thì hàm số $y=f\left( x \right)g\left( x \right)$ là hàm số lẻ.

    Bài 9. Tìm $m$ để hàm số: $y=f\left( x \right)$ $=\frac{x\left( {{x}^{2}}-2 \right)+2m-1}{x-2m+1}$ là hàm số chẵn.

    Bài 10. Chứng minh rằng với hàm số $f(x)$ bất kỳ, $ f(x)$ có thể biểu diễn duy nhất dưới dạng tổng của một hàm số chẵn và một hàm số lẻ.