Tag: tam thức bậc hai

  • So sánh 1 số với 2 nghiệm của phương trình bậc hai

    So sánh 1 số với 2 nghiệm của phương trình bậc hai

    So sánh 1 số với 2 nghiệm của phương trình bậc hai

    Để so sánh một số với hai nghiệm của phương trình bậc hai, chúng ta sử dụng định lý đảo về dấu tam thức bậc hai.

    1. So sánh 1 số với 2 nghiệm của phương trình bậc hai

    Cho tam thức bậc hai $ f(x)=ax^2+bx+c $, với $ a\ne 0 $, có hai nghiệm phân biệt $ x_1<x_2 $ và một số $ \alpha$. Khi đó, ta có các kết quả sau

    1.1. Số α nằm trong khoảng hai nghiệm

    • Số $\alpha$ nằm giữa hai nghiệm, tức là $ x_1<\alpha<x_2 $ điều kiện cần và đủ là $$a\cdot f(\alpha)<0$$

    1.2. Số α nằm ngoài khoảng hai nghiệm

    • Số $\alpha$ nằm về bên trái hai nghiệm $x_1,x_2$ (nói cách khác, số $\alpha$ bé hơn hai nghiệm), tức là $ \alpha<x_1<x_2$ điều kiện cần và đủ là $$\begin{cases} \Delta >0\\ a\cdot f(\alpha)>0\\ \alpha<\frac{S}{2} \end{cases}$$
    • Số $\alpha$ nằm về bên phải hai nghiệm $x_1,x_2$, (nói cách khác, số $\alpha$ lớn hơn hai nghiệm)tức là $ x_1<x_2<\alpha$ điều kiện cần và đủ là  $$ \begin{cases}
      \Delta >0\\ a\cdot f(\alpha)>0\\ \frac{S}{2}<\alpha \end{cases}$$

    1.3. So sánh nghiệm của phương trình bậc hai với số 0

    Đặc biệt, khi $\alpha=0$ chúng ta có các bài toán:

    • Tìm điều kiện để phương trình có hai nghiệm trái dấu: Tức là $x_1<0<x_2$, khi đó $f(\alpha) = f(0) =c$ nên điều kiện cần và đủ là $$ac<0$$
    • Tìm điều kiện để phương trình có hai nghiệm dương phân biệt khi và chỉ khi  $$ \begin{cases} \Delta >0\\ ac>0\\ -\frac{b}{a}>0\end{cases}$$
    • Tìm điều kiện để phương trình có hai nghiệm âm phân biệt khi và chỉ khi  $$ \begin{cases} \Delta >0\\ ac>0\\ -\frac{b}{a}<0\end{cases}$$

    Đôi khi, người ta còn đặt tổng 2 nghiệm là $x_1+x_2=S=-\frac{b}{a}$, tích hai nghiệm là $x_1 x_2=P=\frac{c}{a}$ thì các điều kiện trên trở thành:

    • Phương trình bậc 2 có hai nghiệm trái dấu khi và chỉ khi $P<0$.
    • Phương trình bậc 2 có hai nghiệm cùng dấu khi và chỉ khi $$ \begin{cases} \Delta >0\\ P>0\end{cases}$$
    • Phương trình bậc 2 có hai nghiệm dương phân biệt khi và chỉ khi  $$ \begin{cases} \Delta >0\\ P>0\\ S>0\end{cases}$$
    • Phương trình bậc 2 có hai nghiệm âm phân biệt khi và chỉ khi  $$ \begin{cases} \Delta >0\\ P>0\\ S<0\end{cases}$$

    2. So sánh nghiệm với hai số cho trước α < β

    • Phương trình có hai nghiệm thỏa mãn ${{x}_{1}}<\alpha <\beta <{{x}_{2}}\Leftrightarrow \left\{ \begin{align}   & af(\alpha )<0 \\ & af(\beta )<0 \\ \end{align} \right.$
    • Phương trình có hai nghiệm thỏa mãn ${{x}_{1}}<\alpha <{{x}_{2}}<\beta \Leftrightarrow \left\{ \begin{align}   & af(\alpha )<0 \\ & af(\beta )>0 \\ \end{align} \right.$
    • Phương trình có hai nghiệm thỏa mãn $\alpha <{{x}_{1}}<\beta <{{x}_{2}}\Leftrightarrow \left\{ \begin{align}   & af(\alpha )>0 \\  & af(\beta )<0 \\ \end{align} \right.$
    • Phương trình có hai nghiệm phân biệt và chỉ có một nghiệm thuộc khoảng $(\alpha;\beta)$ khi và chỉ khi $$f(\alpha).f(\beta) < 0$$
    • Phương trình có hai nghiệm phân biệt và $\alpha <{{x}_{1}}<{{x}_{2}}<\beta \Leftrightarrow \left\{ \begin{align}   & \Delta >0 \\  & af(\alpha )>0 \\  & af(\beta )>0 \\  & \frac{S}{2}-\alpha >0 \\  & \frac{S}{2}-\beta <0 \\ \end{align} \right.$

    3. Ví dụ về so sánh nghiệm phương trình bậc hai với một số

    Ví dụ 1. Tìm $m$ để phương trình: ${{x}^{2}}-2mx+m+2=0$

    • Có hai nghiệm trái dấu;
    • Có hai nghiệm cùng lớn hơn $1$.

    Hướng dẫn.

    • Phương trình có hai nghiệm trái dấu khi và chỉ khi $$P=\frac{c}{a}=m+2<0\Leftrightarrow m<-2$$
      Vậy $m<-2$ là giá trị cần tìm.
    • Phương trình có hai nghiệm ${{x}_{1}},{{x}_{2}}$ cùng lớn hơn 1 khi và chỉ khi $$ \begin{cases} \Delta >0\\ a.f(1)>0\\
      {-b}{2a}>0 \end{cases} $$ Giải hệ này ta tìm được đáp số $2\leqslant m<3$.

    Cách khác, không sử dụng định lý đảo về dấu tam thức bậc hai, mà chúng ta sử dụng định lí Viète:

    • Phương trình có hai nghiệm $x_1,x_2$ khi và chỉ khi $$\Delta’={{m}^{2}}-m-2\geqslant 0\Leftrightarrow m\in (-\infty,-1]\cup[2,+\infty)$$
    • Khi đó, cả hai nghiệm của phương trình đều lớn hơn $ 1$, tức là $ x_1-1>0$ và $ x_2-1>0$. Do đó, chúng ta có \begin{align*}
      \begin{cases} x_1-1>0\\ x_2-1>0 \end{cases} \Leftrightarrow \begin{cases}  (x_1-1)(x_2-1)>0\\ (x_1-1)+(x_2-1)>0
      \end{cases}\end{align*}
    • Nhân ra và sử dụng Viète, thay $ x_1x_2=m+2$ và $ x_1+x_2=2m$ chúng ta được hệ \begin{align}
      \begin{cases} m+2-2m+1>0\\2m-2>0 \end{cases} \Leftrightarrow 1<m<3 \end{align}
      Kết hợp với điều kiện ta có $2\leqslant m<3$ là những giá trị cần tìm.

    Ví dụ 2.  Cho phương trình $ {x^2} + 2mx – 3{m^2} = 0$. Tìm $ m$ để phương trình có hai nghiệm $ x_1, x_2$ thoả mãn $ {x1} < 1 < {x_2}.$
    Hướng dẫn. Đặt $ f\left( x \right) = {x^2} + 2mx – 3{m^2}$. Yêu cầu bài toán tương đương với
    $$ af\left( 1 \right) < 0 \Leftrightarrow 1 \cdot f\left( 1 \right) < 0 \Leftrightarrow {1^2} + 2m – 3{m^2} < 0 \Leftrightarrow – 3{m^2} + 2m + 1 < 0 \Leftrightarrow \left[ \begin{array}{l} m > 1\\ m < – \frac{1}{3} \end{array} \right. $$.

    Ví dụ 3. Cho phương trình $ {x^2} + 2mx – 3{m^2} = 0$. Tìm m để phương trình có hai nghiệm $ x_1, x_2$ và số $ \alpha =1$ nằm ngoài khoảng hai nghiệm.

    Hướng dẫn. Đặt $ f\left( x \right) = {x^2} + 2mx – 3{m^2}$. Ta có $ \Delta ‘ = {m^2} – \left( { – 3{m^2}} \right) = 4{m^2}$.
    Yêu cầu bài toán tương đương
    $$ \left\{ \begin{array}{l} \Delta ‘ > 0\\ af\left( \alpha \right) > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 4{m^2} > 0\\ – 3{m^2} + 2m + 1 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m \ne 0\\ – \frac{1}{3} < m < 1 \end{array} \right. $$.

    4. Bài tập so sánh nghiệm phương trình bậc hai

    Bài 1. Tìm giá trị của $ m $ để phương trình sau có nghiệm cùng dấu. Khi đó hai nghiệm mang dấu gì?

    • $ x^2-2mx+5m-4=0; $
    • $ mx^2+mx+3=0. $

    Bài 2. Tìm $ m $ để phương trình $ (m+1)x^2+2(m+4)x+m+1=0 $ có một nghiệm, hai nghiệm phân biệt cùng dấu, hai nghiệm âm phân biệt?

    Bài 3. Tìm $ m $ để phương trình $ (m-4)x^2-2(m-2)x+m-1=0 $ có hai nghiệm cùng dấu, hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn, đúng một nghiệm dương, hai nghiệm đối nhau?

    Bài 4. Tìm $m$ để phương trình $ mx^2-2(m-3)x+m-4=0 $ có đúng một nghiệm không dương.

    Bài 5. Tìm $ m $ để phương trình $ (m+1)x^2-2x+m-1=0 $ có ít nhất một nghiệm không âm.

    Bài 6. So sánh số $1$ với nghiệm của phương trình $ 2x^2 – 18x + 17 = 0$ [TD10BD70]
    Bài 7. So sánh số $- 2$ với nghiệm của phương trình $f(x) = (m^2 + 1)x^2 – 5(m^2 + 1)x – m^2 + m – 1 = 0$ [TD11BD70]
    Bài 8. Tìm $ m$ để các phương trình sau có hai nghiệm

    • $ mx^2 + (m – 1)x + 3 – 4m = 0$ và thoả mãn $ x_1 < 2 < x_2$ [VD1TTM19]
    • $ (m + 1)x^2 – (m – 3)x + m + 1 = 0$ và thoả mãn $ -1 < x_1 \leqslant x_2$
    • $ (m + 1)x^2 + mx + 3 = 0$ và thoả mãn $ x_1 < – 2 < 1 < x_2$ [VD-TTM27]
    • $ x^2 – 2mx + m = 0$ và thoả mãn $ x_1, x_2\in (-1;3)$
    • $ x^2 – 2x – 3m = 0$ và thoả mãn $\frac{m}{2}\le {{x}_{1}}<1<{{x}_{2}}$

    Bài 9. Tìm $ m$ để phương trình sau có nghiệm

    • $ (x^2 + 2x)2 – 4m(x^2 + 2x) + 3m + 1 = 0$ [VD1TTM23]
    • $ x^4 + mx^3 + 2mx^2 + mx + 1 = 0$ [VD!TTM31]

    Bài 10. Tìm $ m$ để phương trình $ (m + 1)x^2 – 3mx + 4m = 0$ có duy nhất một nghiệm lớn hơn $ 1$.

    Bài 11. Cho phương trình $ x^2 – (2m – 3)x + m2 – 3m = 0$. Xác định $ m$ để phương trình có hai nghiệm $ x_1 ; x_2$ thoả mãn $ 1 < x_1 < x_2 < 6$.

    Bài 12. Cho phương trình $ 2x^2 + (2m – 1)x + m – 1 = 0$. Xác định $ m$ để phương trình có hai nghiệm phân biệt $ x_1 ; x_2$ thoả mãn: $ – 1 < x_1 < x_2 < 1.$

    Bài 13. Cho $ f(x) = x^2 – 2(m + 2)x + 6m + 1.$

    • Chứng minh rằng phương trình $ f(x) = 0$ có nghiệm với mọi $ m$.
    • Đặt $ x = t + 2$. Tính $ f(x)$ theo $ t$, từ đó tìm điều kiện đối với $ m$ để phương trình $ f(x) = 0$ có hai nghiệm lớn hơn $ 2$.

    Bài 14. Cho phương trình bậc hai: $ x^2 + 2(a + 3)x + 4(a + 3) = 0$.

    • Với giá trị nào của tham số $ a$, phương trình có nghiệm kép. Tính các nghiệm kép.
    • Xác định $ a$ để phương trình có hai nghiệm phân biệt lớn hơn $ – 1$.

    Bài 15. Cho phương trình: $ x^2 + 2(m – 1)x – (m + 1) = 0$.

    • Tìm giá trị của $ m$ để phương trình có một nghiệm nhỏ hơn $ 1$ và một nghiệm lớn hơn $ 1$.
    • Tìm giá trị của $ m$ để phương trình có hai nghiệm nhỏ hơn $ 2$.

    Bài 16. Tìm $m$ để phương trình: $ x^2 – mx + m = 0$ có nghiệm thoả mãn $ x_1 \leqslant – 2 \leqslant x_2$

    Bài 17. Cho biểu thức \[ A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right). \] Tìm $ m $ để có $ x $ thoả mãn $ A(\sqrt{x}+1)=m(x+1)-2 $.

    Bài 18. Tìm $ m $ để có $ x<0 $ sao cho \[ m=\frac{x(1-x^2)^2}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]. \]

    Bài 19. Tìm $ m $ để có $ x<0 $ sao cho \[ m=\sqrt{x}-\frac{\sqrt{4x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{3-\sqrt{x}}+\frac{\sqrt{x}+3}{\sqrt{x}-2}. \]

  • Lý thuyết và bài tập dấu tam thức bậc hai

    Lý thuyết và bài tập dấu tam thức bậc hai

    Lý thuyết và bài tập dấu tam thức bậc hai

    Sử dụng kiến thức về dấu tam thức bậc hai, chúng ta có thể giải quyết được 2 dạng toán quan trọng sau:

    1. Tam thức bậc hai là gì?

    Tam thức bậc hai đối với biến $x$ là biểu thức có dạng $$f(x) = ax^2+ bx + c,$$ trong đó $a, b, c$ là những hệ số, $a \ne  0$.

    2. Định lí về dấu của tam thức bậc hai

    2.1. Định lí dấu tam thức bậc hai

    Cho tam thức bậc hai $ f(x)=ax^2+bx+c $ với $ a\ne 0 $ có $ \Delta=b^2-4ac $. Khi đó, có ba trường hợp xảy ra:

    • $ \Delta <0 $: $ f(x) $ cùng dấu với hệ số $ a $ với mọi $ x\in \mathbb{R}, $
    • $ \Delta =0 $: $ f(x) $ cùng dấu với hệ số $ a $ với mọi $ x\ne -\frac{b}{2a}, $
    • $ \Delta >0 $: $ f(x) $ có hai nghiệm phân biệt $ x_1,x_2 $ (giả sử $ x_1<x_2 $), và dấu của $ f(x) $ xác định bởi quy tắc trong trái — ngoài cùng, nghĩa là ở giữa hai số $0$ thì thì $ f(x) $ và hệ số $ a $ trái dấu, còn bên ngoài hai số $0$ thì cùng dấu.

    bảng xét dấu tam thức bậc hai

    2.2. Minh họa hình học của định lý dấu tam thức bậc hai

    Định lí về dấu của tam thức bậc hai có minh họa hình học sau

    định lí về dấu tam thức bậc hai

    2.3. Ứng dụng định lí dấu của tam thức bậc hai

    Nhận xét rằng trong cả hai trường hợp $ a>0 $ và $ a<0 $ thì

    • $ f(x) $ luôn có đủ hai loại dấu cả âm và dương nếu $ \Delta >0, $
    • $ f(x) $ chỉ có một loại dấu hoặc âm hoặc dương nếu $ \Delta \leqslant 0. $

    Do đó, chúng ta có các bài toán sau đây, với $ f(x)=ax^2+bx+c $ trong đó $ a\ne 0 $:

    • $ f(x) >0\, \forall x\in \mathbb{R} \Leftrightarrow \begin{cases} \Delta <0\\ a>0 \end{cases}$
    • $ f(x) <0\, \forall x\in \mathbb{R} \Leftrightarrow \begin{cases} \Delta <0\\ a<0 \end{cases}$
    • $ f(x) \geqslant 0\, \forall x\in \mathbb{R} \Leftrightarrow \begin{cases} \Delta \leqslant 0\\ a>0 \end{cases}$
    • $ f(x) \leqslant 0\, \forall x\in \mathbb{R} \Leftrightarrow \begin{cases} \Delta \leqslant 0\\ a<0 \end{cases}$

    Chi tiết về vấn đề này, xin mời các em học sinh xem trong bài giảng Tìm điều kiện để tam thức bậc hai luôn dương, luôn âm

    2.4. Định lí đảo dấu tam thức bậc hai

    Cho tam thức bậc hai $ f(x)=ax^2+bx+c $, với $ a\ne 0 $, có hai nghiệm phân biệt $ x_1<x_2 $ và một số $ \epsilon $. Khi đó, ta có các kết quả sau

    • $ x_1<\epsilon <x_2 \Leftrightarrow a\cdot f(\epsilon)<0$
    • $ \epsilon <x_1<x_2 \Leftrightarrow \begin{cases}
      \Delta >0\\
      a\cdot f(\epsilon)>0\\
      \epsilon <\frac{S}{2}
      \end{cases}$
    • $ x_1<x_2<\epsilon \Leftrightarrow \begin{cases}
      \Delta >0\\
      a\cdot f(\epsilon)>0\\
      \frac{S}{2}<\epsilon
      \end{cases}$

    Ứng dụng của định lí đảo là dùng để so sánh một số với hai nghiệm của phương trình bậc hai. Chi tiết vấn đề này, mời các em tham khảo bài So sánh 1 số với 2 nghiệm của phương trình bậc hai

    3. Bài tập về dấu tam thức bậc hai

    Bài 1.  Xét dấu các tam thức sau

    1. $ f(x)=x^2-5x+6$
    2. $ g(x)=-x^2+4x+5$
    3. $ h(x)=6x^2+x+4$

    Hướng dẫn.

    1. Tam thức bậc hai $f(x)$ có hệ số $ a=6$ và có hai nghiệm $ x_1=2,x_2=3 $ nên có bảng xét dấu như sau:bảng xét dấu của tam thức bậc hai f(x)
    2. Tam thức bậc hai $ g(x)=-x^2+4x+5$ có hệ số $ a=-1$ và có hai nghiệm $ x_1=-1,x_2=5 $ nên có bảng xét dấu như sau: bảng xét dấu của g(x)
    3. Tam thức bậc hai $ h(x)=6x^2+x+4$ có hệ số $ a=6$ và có $ \Delta <0$ nên có bảng xét dấu như sau: bảng xét dấu của hx

    Bài 2. Giải các bất phương trình sau

    1. $x^2-2x+3>0$
    2. $x^2+9>6x$
    3. $6x^2-x-2 \geqslant 0$
    4. $\frac{1}{3}x^2+3x+6<0$
    5. $\dfrac{x^2+1}{x^2+3x-10}<0$
    6. $\dfrac{10-x}{5+x^2}>\dfrac{1}{2}$
    7. $\dfrac{x+1}{x-1}+2>\dfrac{x-1}{x}$
    8. $\dfrac{1}{x+1}+\dfrac{2}{x+3}<\dfrac{3}{x+2}$

    Hướng dẫn. Để giải các bất phương trình hữu tỉ, chúng ta biến đổi (rút gọn, quy đồng giữ lại mẫu) để được một bất phương trình tích, thương các nhị thức bậc nhất và tam thức bậc hai. Sau đó lập bảng xét dấu và căn cứ vào đó để kết luận.

    1. $x^2-2x+3>0.$
      Bất phương trình này chỉ gồm một tam thức bậc hai nên chúng ta lập bảng xét dấu luôn, được kết quả như sau:bảng xét dấu bất phương trình bậc hai
      Từ bảng xét dấu, chúng ta có tập nghiệm của bất phương trình là $\mathbb{R}$.
    2. $x^2+9>6x$. Biến đổi bất phương trình đã cho thành $$x^2+9-6x>0$$ Bảng xét dấu của vế trái như sau: bat phuong trinh bac hai 2
      Suy ra, tập nghiệm của bất phương trình đã cho là $\mathbb{R}\setminus \{0\}$.
    3. $6x^2-x-2 \geqslant 0$. Lập bảng xét dấu cho vế trái, ta được: bat phuong trinh đa thuc
      Suy ra, tập nghiệm của bất phương trình đã cho là $ S=\left(-\infty;-\frac{1}{2}\right]\cup \left[\frac{2}{3};+\infty\right)$.
    4. $\frac{1}{3}x^2+3x+6<0$. Bảng xét dấu của vế trái: bất phương trình hữu tỉ
      Kết luận, tập nghiệm của bất phương trình là $S=(-6;-3)$.
    5. $\dfrac{x^2+1}{x^2+3x-10}<0$. Lập bảng xét dấu cho vế trái, chúng ta có bảng sau: bất phương trình phân thức hữu tỉKết luận, tập nghiệm của bất phương trình là $S=(-5;2)$.
    6. $\dfrac{10-x}{5+x^2}>\dfrac{1}{2}$. Chuyển vế, quy đồng giữ lại mẫu của bất phương trình đã cho, ta được bất phương trình tương đương $$\frac{-x^{2}-2x+15}{2\left( x^{2}+5\right) }>0$$ Lập bảng xét dấu cho vế trái bất phương trình này, ta được bảng sau:bất phương trình thươngKết luận, tập nghiệm của bất phương trình là $S=(-5;3)$.
    7. $\dfrac{x+1}{x-1}+2>\dfrac{x-1}{x}$. Chuyển vế, quy đồng giữ mẫu của bất phương trình này, ta được bất phương trình tương đương: $$\frac{2x^{2}+x-1}{x^{2}-x}>0$$Lập bảng xét dấu cho vế trái, ta được: bất phương trình hữu tỉKết luận, tập nghiệm của bất phương trình đã cho là $S= \left( -\infty ,-1\right) \cup \left( 0,\frac{1}{2}\right) \cup \left( 1,+\infty \right) $.
    8. $\dfrac{1}{x+1}+\dfrac{2}{x+3}<\dfrac{3}{x+2}$. Chuyển vế, quy đồng ta được bất phương trình tương đương: $$\frac{-x+1}{\left( x+3\right) \left( x+2\right) \left( x+1\right) }<0$$ Lập bảng xét dấu cho vế trái, ta được:bất phương trình chứa ẩn ở mẫu sử dụng tam thức bậc hai
      Căn cứ vào bảng xét dấu, chúng ta có tập nghiệm của bất phương trình đã cho là $S=\left( -\infty ,-3\right) \cup \left( -2,-1\right) \cup \left( 1,+\infty \right) $.

    Bài 3. Tìm các giá trị của tham số $m$ để các phương trình sau có 2 nghiệm dương phân biệt

    1. $(m^2+m+1)x^2+(2m-3)x+m-5=0$
    2. $x^2-6mx+2-2m+9m^2=0$

    Bài 4. Tìm $m$ để các bất phương trình sau vô nghiệm.

    1. $5x^2-x+m\leqslant 0$
    2. $mx^2-10x-5\geqslant 0$
    3. $(m-1)x^{2}-(2m+1)x>m-3$
    4. $x^{2}-2mx+m+12<0$
    5. $-2x^{2}-mx+m^{2}-1>0$
    6. $x^{2}+3mx-9<0$
    7. $2mx^{2}+x-3\geqslant 0$
    8. $x^{2}+3x-9m\leqslant 0$

    Bài 5. Tìm $m$ để các bất phương trình sau có nghiệm duy nhất.

    1. $x^{2}-2mx+m+12\leqslant 0$
    2. $-2x^{2}-mx+m^{2}-1\geqslant 0$
    3. $x^{2}+3mx-9\leqslant 0$
    4. $x^{2}+3x-9m\leqslant 0$
    5. $(m-1)x^{2}-(2m+1)x\geqslant -m-3$
    6. $2mx^{2}+x-3\geqslant 0$

    Bài 6. Tìm $m$ để các bất phương trình sau có tập nghiệm là $\mathbb{R}$.

    1. $5x^2-x+m>0$
    2. $mx^2-10x-5<0$
    3. $\dfrac{x^2-mx-2}{x^2-3x+4}>-1$
    4. $m(m+2)x^2+2mx+2>0$
    5. $x^{2}-2mx+m+12>0$
    6. $-2x^{2}-mx+m^{2}-1<0$
    7. $x^{2}+3mx-9\geqslant 0$
    8. $2mx^{2}+x-3\geqslant 0$
    9. $x^{2}+3x-9m>0$
    10. $(m-1)x^{2}>(2m+1)x-m-3$

    Bài 7. Tìm $m$ để hàm số sau xác định với mọi $x\in\mathbb{R}$.

    1. $y=\sqrt{x^{2}+3x-m^{2}+2}$
    2. $y=\sqrt{m(m+2)x^{2}+2mx+2}$
    3. $y=\dfrac{1}{\sqrt{mx^{2}+6mx-7}}$

    Bài 8. Giải các bất phương trình sau:

    1. $\dfrac{x^{2}-9x+14}{2-3x}\geqslant 0$
    2. $\dfrac{(2x-5)(x+2)}{-4x+3}>0$
    3. $\dfrac{x-3}{x+1}>\dfrac{x+5}{2-x}$
    4. $\dfrac{x-3}{x+5}<\dfrac{1-2x}{x-3}$
    5. $\dfrac{2x-1}{2x+1}\leqslant 1$
    6. $\dfrac{3x-4}{x-2}>1$
    7. $\dfrac{2x-5}{2-x}\geqslant -1$
    8. $\dfrac{2}{x-1}\leqslant \dfrac{5}{2x-1}$
    9. $\dfrac{1}{x}+\dfrac{1}{x+1}<\dfrac{2}{x^{2}+x}$
    10. $\dfrac{x^{2}}{x^{2}+1}+\dfrac{2}{x}<1$
    11. $\dfrac{11x^{2}-5x+6}{x^{2}+5x+6}<x$
    12. $\dfrac{1}{x+1}-\dfrac{2}{x^{2}-x+1}\leqslant \dfrac{1-2x}{x^{3}+1}$
    13. $\dfrac{2-x}{x^{3}+x}>\dfrac{1-2x}{x^{3}-3x}$
    14. $1<\dfrac{1+x}{1-x}\le2$
    15. $-1\leqslant \dfrac{x^{2}-5x+4}{x^{2}-4}\leqslant 1$

    Xem thêm: Phương trình chứa trị tuyệt đối

    Bài 9. Giải các phương trình sau.

    1. $|2x+1|-3=x$
    2. $|1-3x|+x-7=0$
    3. $|2x-13|+3x-1=0$
    4. $|x^{2}-x+2|=2-x$
    5. $|1-x-2x^{2}|+3x=5$
    6. $|2x^{2}-4x+1|+x-2=1$
    7. $|2x-1|+|1-x|+x=4$
    8. $|2x-1|+|2x+1|=4$
    9. $|x^{2}-3x+2|-2x=1$
    10. $|x^{2}+x-12|=x^{2}-x-2$
    11. $|x^{2}-2x|=2x^{2}-1$
    12. $|2x^{2}+3x-2|=|x^{2}-x-3|$

    Bài 10. Giải các phương trình, bất phương trình sau:

    1. $(x^{2}+4x+10)^{2}-7(x^{2}+4x+11)+7<0$
    2. $x^{4}+4x^{2}+2|x^{2}-2x|=4x^{3}+3$
    3. $2|x+1|-|x^{2}-2x-8|=-5-x+x^{2}$
    4. $|x+3|<x-6$
    5. $|2x-1|+5x-7\geqslant 0$
    6. $|x^{2}-3x+2|-3x-7\geqslant 0$
    7. $|2x-4|+|3x-6|\geqslant 2$
    8. $|x-1|\leqslant 2|-x-4|+x-2$
    9. $|x+2|+|1-2x|\leqslant x+1$