Tag: thiết diện

  • Chuyên đề thiết diện trong hình học không gian

    Chuyên đề thiết diện trong hình học không gian

    Chuyên đề thiết diện trong hình học không gian

    Thầy cô tải file PDF chuyên đề thiết diện ở cuối bài viết.

    Xem thêm: Thiết diện là gì và các phương pháp tìm thiết diện

    Bài toán xác định thiết diện của một hình chóp, một hình lăng trụ khi cắt bởi một mặt phẳng gắn liền với các cách xác định một mặt phẳng trong không gian.

    Ở bài này, chúng tôi xin giới thiệu 3 loại toán xác định thiết diện của một hình không gian cắt bởi mặt phẳng $\left( \alpha  \right)$ trong các trường hợp sau:

    1. Mặt phẳng $\left( \alpha  \right)$ xác định bởi ba điểm phân biệt không thẳng hàng.

    ­Đối với loại toán này, chúng tôi giới thiệu 2 phương pháp để xác định thiết diện là phương pháp giao tuyến gốc và phương pháp phép chiếu xuyên tâm.

    1.1. Phương pháp giao tuyến gốc (Trace method)

    • Xác định giao tuyến $d$ của mặt phẳng $\left( \alpha \right)$ với một mặt ${\cal H}$ của hình chóp, hình lăng trụ (thường là với mặt đáy).
    • Tìm các giao điểm của giao tuyến $d$ với các cạnh, đường chéo của mặt ${\cal H}$.
    • Các giao điểm này thuộc mặt đáy nhưng cũng thuộc vào các mặt bên của hình ${\cal H}$. Từ các giao điểm này, chúng ta sẽ xác định được giao tuyến của $\left( \alpha \right)$ và các mặt còn lại của hình chóp. Từ đó dựng được thiết diện.

    Ví dụ 1. Cho hình chóp $S.ABCD$ có đáy không là hình thang. Giả sử $M$ là một điểm trên $SD$, xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {ABM} \right)$.

    chuyen de thiet dien

    Hướng dẫn.

    • Rõ ràng rằng giao tuyến của mặt phẳng $\left( {ABM} \right)$ với mặt đáy $\left( {ABCD} \right)$ là đường thẳng $AB$, nên chúng ta lựa chọn đường thẳng $AB$ làm giao tuyến gốc.
    • Tiếp theo, ta xác định các giao điểm của đường thẳng $AB$ với các cạnh của đáy, nếu không được thì sẽ sử dụng đến giao điểm với đường chéo. Vì tứ giác $ABCD$ không là hình thang nên kéo dài hai đường thẳng $AB$ và $CD$ thì chúng sẽ cắt nhau, giả sử là điểm $I$.
    • Lúc này, đường thẳng $IM$ nằm trong mặt phẳng $\left( {SCD} \right)$ nên nó sẽ cắt được đường thẳng $SC$, giả sử cắt tại điểm $N$.
    • Thấy ngay, mặt phẳng $\left( {ABM} \right)$ lần lượt cắt các mặt của hình chóp $S.ABCD$ theo các giao tuyến tạo thành một tứ giác là $AMNB$ nên thiết diện chính là tứ giác $AMNB$.

    Ví dụ 2. Cho tứ diện $ABCD$ có $M,N$ là trung điểm của $AB,CD$. Giả sử $P$ là một điểm nằm trên cạnh $AD$ nhưng không là trung điểm. Xác định thiết diện của mặt phẳng $\left( {MNP} \right)$ và tứ diện?

    Chuyên đề thiết diện trong hình học không gian 1

    Hướng dẫn. Chúng ta lựa chọn $MP$ là giao tuyến gốc. Trong mặt phẳng $\left( {ABD} \right),\;$kéo dài $MP$ cắt $BD$ tại $E$. Trong mặt phẳng $\left( {BCD} \right)$, nối $EN$ cắt $BC$ tại $Q$. Thiết diện là tứ giác $MPNQ$.

    Ví dụ 3. Cho hình chóp $S.ABCD$ có điểm $M$ là trung điểm $SC,N$ là một điểm trên cạnh $SD$ sao cho $SN < DN$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {AMN} \right)$.

    Hướng dẫn. Chúng ta lựa chọn $MN$ làm giao tuyến gốc. Trong mặt phẳng $\left( {SCD} \right)$, kéo dài $MN$ cắt $CD$ tại $P$. Trong mặt phẳng $\left( {ABCD} \right)$, nối $AP$ cắt $BC$ tại $Q$, tùy thuộc vào vị trí điểm $Q$ nằm trong hay ngoài đoạn $BC$ mà ta được thiết diện là như trong 2 hình vẽ sau đây.

    Chuyên đề thiết diện trong hình học không gian 2Ví dụ 4. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M,N,P$ lần lượt là trung điểm của $BC,CD$ và $SA$. Xác định thiết diện của hình chóp và mặt phẳng $\left( {MNP} \right)$.

    Chuyên đề thiết diện trong hình học không gian 3

    Hướng dẫn. Chúng ta chọn $MN$ làm giao tuyến gốc. Trong mặt phẳng $\left( {ABCD} \right)$, kéo dài $MN$ cắt $AB,AD$ lần lượt tại $J,I$. Trong mặt phẳng $\left( {SAD} \right)$, gọi giao điểm của $PI$ và $SD$ là $O.$ Trong mặt phẳng $\left( {SAB} \right)$, gọi $Q$ là giao điểm của $PJ$ và $SB$. Thiết diện là ngũ giác $MNOPQ$.

    Ví dụ 5. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M,N,P$ lần lượt là trung điểm của $CD,BC$ và $SB$. Xác định thiết diện của hình chóp và mặt phẳng $\left( {MNP} \right)$.

    Chuyên đề thiết diện trong hình học không gian 4

    Hướng dẫn. Trong mặt phẳng $\left( {ABCD} \right)$ gọi $O,K$ lần lượt là giao điểm của $MN$ với $AB$ và $AD$. Trong mặt phẳng $\left( {SAB} \right)$ gọi $Q$ là giao điểm của $SA$ và $PO$. Trong mặt phẳng $\left( {SAD} \right)$ gọi $R$ là giao điểm của $QK$ và $SD$. Thiết diện là ngũ giác $MNPQR$.

    Ví dụ 6. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $O$. Gọi $M,N$ lần lượt là trung điểm của $BC,CD$. Trên đoạn $SO$ lấy điểm $P$ sao cho $SP > OP$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {MNP} \right)$.

    Chuyên đề thiết diện trong hình học không gian 5

    Hướng dẫn. Trong mặt phẳng $\left( {ABCD} \right)$ gọi $E,F,G$ lần lượt là giao điểm của $MN$ với $AB,AD,AC$. Trong mặt phẳng $\left( {SAC} \right)$ gọi $J = \;GP \cap SA$, trong $\left( {SAB} \right)$ gọi $K = JE \cap SB$, trong $\left( {SAD} \right)$ gọi$\;I = JF \cap SD$. Thiết diện là ngũ giác $MNIJK$.

    Ví dụ 7. Cho tứ diện $ABCD$ có $M$ là trung điểm của $AB$ và $G$ là trọng tâm tam giác $ACD.\;N$ là một điểm bất kì thuộc đoạn $BC$. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $\left( {MNG} \right).$

    Chuyên đề thiết diện trong hình học không gian 6

    Hướng dẫn. Tình huống này học sinh dễ ngộ nhận $MN$ cắt $AC,\;$điều này chưa chắc xảy ra vì nếu $N$ ở vị trí trung điểm $BC$ thì khi đó $MN$ và $AC$ song song với nhau.

    Chúng ta có thể sử dụng phương pháp phép chiếu xuyên tâm hoặc chọn giao tuyến gốc như sau:

    • Trong mặt phẳng $(ACD$), kéo dài $AG$ cắt $CD$ tại $F$.
    • Trong mặt phẳng $\left( {ABF} \right)$ gọi $I$ là giao điểm của $MG$ và $BF$, hai đường thẳng này chắc chắn cắt nhau vì $\frac{{AM}}{{AB}} = \frac{1}{2} \ne \frac{{AG}}{{AF}} = \frac{1}{3}$. Giao tuyến gốc ở đây chính là đường thẳng $NI$.
    • Trong mặt phẳng $\left( {BCD} \right)$ gọi $P$ là giao điểm của $CD$ và $NI$.
    • Thiết diện là tứ giác $MNPQ$.

    1.2. Phương pháp phép chiếu xuyên tâm (Inner Projection Method).

    Phép chiếu xuyên tâm (còn được gọi là phép phối cảnh, tiếng Anh: inner projection) được giới thiệu ngay từ lớp 8, trong chương trình công nghệ – vẽ kỹ thuật.

    định nghĩa khái niệm phép chiếu xuyên tâm là gì

    Trong không gian, cho một điểm $S$ và một mặt phẳng $\left( P \right)$ không đi qua $S$. Quy tắc biến mỗi điểm $M$ trong không gian thành điểm  là giao điểm của mặt phẳng $\left( P \right)$ và đường thẳng $SM$ được gọi là phép chiếu xuyên tâm (tâm $S$) xuống mặt phẳng $\left( P \right)$.

    Phương pháp phép chiếu xuyên tâm còn được gọi là phương pháp đường gióng.

    • Chọn một tam giác trên mặt phẳng $\left( \alpha \right)$ làm tam giác cơ sở và xác định hình chiếu của nó lên mặt đáy qua phép chiếu xuyên tâm với tâm là đỉnh của hình chóp.
    • Xác định các giao điểm của tam giác hình chiếu với các cạnh, đường chéo của đáy.
    • Dựa vào quan hệ liên thuộc, tìm các điểm trên mặt phẳng $\left( \alpha \right)$ tương ứng với các điểm ở dưới mặt đáy.

    Ví dụ 1. Cho hình chóp $S.ABCD$ có $C’$ là một điểm trên cạnh $SC$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {ABC’} \right)$ trong trường hợp:

    1. $AB$ không song song với $CD$;
    2. $AB$ song song với $CD$.

    chuyên đề thiết diện bằng phương pháp phép chiếu xuyên tâm

    Hướng dẫn. Rõ ràng phần 1 học sinh có thể làm bằng phương pháp giao tuyến gốc. Tuy nhiên sang phần 2 học sinh sẽ không thể giải được theo phương pháp đó mà phải sử dụng phương pháp phép chiếu xuyên tâm.

    • Chọn tam giác $ABC’$ làm tam giác cơ sở. Qua phép chiếu xuyên tâm $S$ lên mặt phẳng $(ABCD$) thì tam giác cơ sở biến thành tam giác $ABC$. Chúng ta sẽ lần lượt đi tìm giao điểm của các cạnh tam giác này với các cạnh và đường chéo của đáy.
    • Trong mặt phẳng $\left( {ABCD} \right)$ gọi $O$ là giao điểm của $AC$ và $BD$. Nhận thấy rằng điểm $O$ thuộc tam giác $ABC$ thì sẽ có một điểm $O’$ tương ứng thuộc tam giác cơ sở $ABC’$ mà qua phép chiếu sinh ra điểm $O$ này. Nhiệm vụ của chúng ta là tìm ra điểm $O’$ đó.
    • Trong mặt phẳng $\left( {SAC} \right)$ thấy ngay $O’$ là giao điểm của $SO$ và $AC’$.
    • Cuối cùng, trong mặt phẳng $\left( {SBD} \right)$ gọi $D’$ là giao điểm của $BO’$ và $SD$. Thiết diện là tứ giác $ABC’D’.$

    Ví dụ 2. Cho hình chóp $S.ABCD$ có ba điểm $M,N,P$ lần lượt thuộc $SA,SB,SC$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {MNP} \right)$.

    chuyên đề thiết diện bằng phương pháp phép chiếu xuyên tâm

    Hướng dẫn. Chọn tam giác $MNP$ làm tam giác cơ sở. Chiếu lên đáy được tam giác $ABC$. Cạnh $AC$ của tam giác hình chiếu này cắt đường chéo $BD$ của đáy tại $O$. Trong mặt phẳng $\left( {SAC} \right)$ gọi $I$ là giao điểm của $SO$ và $MN$. Trong mặt phẳng $\left( {SBD} \right)$ gọi $Q$ là giao điểm của $NI$ và $SD$. Thiết diện là tứ giác $MNPQ.$

    Ví dụ 3. [Ví dụ 7 ở phần 1.1.] Cho tứ diện $ABCD$ có $M$ là trung điểm của $AB$ và $G$ là trọng tâm tam giác $ACD.\;N$ là một điểm bất kì thuộc đoạn $BC$. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $\left( {MNG} \right).$

    Chuyên đề thiết diện trong hình học không gian 7

    Hướng dẫn.

    • Chọn tam giác $MNG$ làm tam giác cơ sở, chiếu lên đáy được tam giác $BNF$. Cạnh $BF$ của tam giác hình chiếu này cắt $ND$ tại $O$.
    • Trong mặt phẳng $\left( {ABF} \right)$, gọi giao điểm của $MG$ và $SO$ là $I$.
    • Trong mặt phẳng $\left( {AND} \right)$, đường thẳng $NI$ cắt $AD$ tại $Q.$
    • Trong mặt phẳng $\left( {ACD} \right)$, đường thẳng $QG$ cắt $CD$ tại $P$.
    • Thiết diện là tứ giác $MNPQ.$ 

    Ví dụ 4. Cho hình chóp $S.ABCD$ có $M$ là một điểm thuộc miền trong tam giác $SCD$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {ABM} \right)$.

    Chuyên đề thiết diện trong hình học không gian 8

    Hướng dẫn. Trong mặt phẳng $\left( {SCD} \right)$ gọi $E = SM \cap CD$, trong mặt phẳng $\left( {ABCD} \right)$ gọi $F = AC \cap BE$, trong mặt phẳng $\left( {SBE} \right)$ gọi$\;I = BM \cap SF$, trong mặt phẳng $\left( {SAC} \right)$ gọi $N = AI \cap SC$, trong mặt phẳng $\left( {SCD} \right)$ gọi $H = MN \cap SD$. Thiết diện là tứ giác $ABNH$. 

    Ví dụ 5. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $O.$ Gọi $M,N$ lần lượt là trung điểm $SA,SD$. Xác định thiết diện của hình chóp và mặt phẳng $\left( {OMN} \right).$

    Chuyên đề thiết diện trong hình học không gian 9

    Hướng dẫn. Nếu ta chọn tam giác cơ sở là $OMN$ thì chiếu xuống mặt đáy được tam giác $OAD$. Tam giác hình chiếu này không cắt được cạnh nào của hình bình hành $ABCD$. Do đó ta pahir chọn một tam giác cơ sở khác.

    Lấy điểm $K$ bất kì thuộc $MO$ và chọn $MNK$ làm tam giác cơ sở. Chiếu tam giác này lên mặt đáy được tam giác $ADH$. Kéo dài $DH$ cắt $NK$ tại $J$. Đường thẳng $OJ$ cắt $AB,CD$ tại $Q,P$. Thiết diện là tứ giác $MNPQ.$

    Cách giải khác cho ví dụ này xin mời xem Ví dụ 1 ở phần 2 sau đây.

    2. Mặt phẳng $\left( \alpha  \right)$ đi qua một điểm và song song với hai đường thẳng

    Chúng ta thường sử dụng 2 kết quả sau để dựng thiết diện.

    • Nếu mặt phẳng $\left( \alpha  \right){\rm{\;}}$chứa đường thẳng $d$ mà $d\parallel \left( \beta  \right)$ thì giao tuyến của hai mặt phẳng $\left( \alpha  \right)$ và $\left( \beta  \right)$ cũng song song với đường thẳng $d$.

    giao tuyen cua mot mat phang chua duong thang song song

    • Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng cũng song song với đường thẳng đó.

    Chuyên đề thiết diện trong hình học không gian 10

     Ví dụ 1. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $O$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( \alpha  \right)$ đi qua $O$ và song song với $SB,SC.$ Thiết diện là hình gì?

    thiet dien song song

    Hướng dẫn.

    • Qua $O$ kẻ đường thẳng song song với $SB$, nó cắt $SD$ tại $N$. $N$ là trung điểm $SD$ vì $ON$ là đường trung bình của tam giác $SBD.$
    • Tương tự, qua $O$ kẻ đường thẳng song song với $SC$, nó cắt $SA$ tại trung điểm $M$.
    • Mặt phẳng $\left( \alpha \right)$ chính là mặt phẳng $\left( {OMN} \right)$.
    • Đường thẳng $MN$ nằm trong mặt phẳng $\left( {OMN} \right)$ và song song với $\left( {ABCD} \right)$, nên giao tuyến $d$ của hai mặt phẳng $\left( {OMN} \right)$ và $\left( {ABCD} \right)$ phải song song với đường thẳng $MN$.
    • Mà giao tuyến $d$ chắc chắn phải chứa điểm $O$. Do đó, $d$ là đường thẳng đi qua $O$ và song song $MN$, tức là cũng song song với $AD$.
    • Đường thẳng $d$ cắt $AB,CD\;$tại $Q,P$ thì thiết diện là hình thang $MNPQ$.

    Ví dụ 2. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $\left( P \right)$ là mặt phẳng đi qua điểm $M$ thuộc đoạn $AC$ và song song với hai đường thẳng $BD,SA$. Hãy dựng thiết diện của hình chóp với mặt phẳng $\left( P \right).$

    Hướng dẫn. Chúng ta phải xét hai trường hợp, điểm $M$ nằm trong đoạn $AO$ và nằm trong đoạn $OC$, với $O$ là tâm hình bình hành.

    Chuyên đề thiết diện trong hình học không gian 11

    Trường hợp 1. Nếu $M$ nằm trong đoạn $AO.$

    • Qua $M$ dựng đường thẳng song song với $BD$, nó cắt $AB$ ở $E$, cắt $AD$ ở $F.$
    • Qua $E,M,F$ lần lượt dựng các đường thẳng song song với $SA.$ Chúng cắt $SB,SC,SD$ lần lượt tại $I,H,G$.
    • Thiết diện là ngũ giác $EFGHI$.

    Chuyên đề thiết diện trong hình học không gian 12

    Trường hợp 2. Nếu $M$ nằm trong đoạn $OC.$

    • Qua $M$ dựng đường thẳng song song với $BD$, nó cắt $DC$ ở $E’$, cắt $BC$ ở $F’.$
    • Qua $M$ dựng đường thẳng song song với $SA$, nó cắt $SC$ tại $H’$.
    • Thiết diện là tam giác $E’F’H’.$

    Ví dụ 3. Cho tứ diện $ABCD$ có $I,J$ lần lượt là trung điểm của $AB,CD$. Gọi $M$ là một điểm trên đoạn $IJ$ và $\left( \alpha  \right)$ là mặt phẳng qua $M$ đồng thời song song với $AB,CD$. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $\left( \alpha  \right)$, thiết diện là hình gì?

    tứ diện abcd

    Hướng dẫn.

    • Trong mặt phẳng $\left( {ABJ} \right),$ qua $M$ kẻ đường thẳng $d$ song song với $AB.$ Đường thẳng $d$ cắt $BJ,AJ$ lần lượt tại $E$ và $F.$
    • Qua $E$ kẻ đường thẳng song song với $CD$, nó cắt $BC,BD$ tại $H$ và $K$.
    • Qua $F$ kẻ đường thẳng song song với $CD$, nó cắt $AC,AD$ tại $P$ và $Q$.
    • Thiết diện là hình bình hành $HKQP$.

    Ví dụ 4. Cho hình chóp $S.ABCD$ có $M,\;N$ là hai điểm trên $AB,\;CD$. Gọi $\left( \alpha  \right)\;$là mặt phẳng chứa $MN$ và song song với $SA$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( \alpha  \right)$.

    Chuyên đề thiết diện trong hình học không gian 13

    Hướng dẫn. Gọi $MN \cap AC = O$. Qua $M,O$ các kẻ đường thẳng song song với $SA,$ chúng cắt $SB,SC$ lần lượt tại $P,Q$. Thiết diện là tứ giác $MNQP$.

    3. Mặt phẳng $\left( \alpha  \right)$ đi qua một điểm và vuông góc với một đường thẳng

    Chúng ta chuyển quan hệ vuông góc sang quan hệ song song nhờ định lý:

    Cho đường thẳng $d$ vuông góc với mặt phẳng $\left( P \right)$ thì mọi đường thẳng $\Delta $ vuông góc với $d$ đều song song hoặc nằm trong mặt phẳng $\left( P \right).$

    thiet dien vuong goc

    Trường hợp mặt phẳng $\left( \alpha  \right)$ chứa đường thẳng $a$ và vuông góc với mặt phẳng $\left( P \right)$ thì chúng ta tìm một đường thẳng $b$ vuông góc với mặt phẳng $\left( P \right).\;$Khi đó, mặt phẳng $\left( \alpha  \right)$ sẽ song song hoặc chứa đường thẳng $b$.

    Ví dụ 1. Cho lăng trụ đứng $ABC.A’B’C’$ có đáy là tam giác nhọn$.$ Mặt phẳng $\left( P \right)$ đi qua $A$ và vuông góc với $A’C$. Biết rằng $CC’ > AC,$ hãy dựng thiết diện của lăng trụ khi cắt bởi mặt phẳng $\left( P \right)$.

    thiet dien vuong goc

    Hướng dẫn. 

    • Kẻ đường cao $BH$ của tam giác $ABC$ thì dễ thấy $BH$ vuông góc với $\left( {ACC’A’} \right).$ Do đó $BH$ vuông góc với $CA’$. Mà $\left( P \right)$ cũng vuông góc với $CA’$ nên suy ra $BH$ song song hoặc nằm trong $\left( P \right)$. Dễ thấy khả năng $BH$ nằm trong mặt phẳng $\left( P \right)$ không xảy ra, vì khi đó $AH$ vuông góc với $A’C$, đây là điều vô lý.
    • Trong mặt phẳng $\left( {ACC’A’} \right)$ kẻ đường thẳng vuông góc với $A’C$, đường thẳng này cắt $CC’$ tại $F$. Điểm $F$ nằm trong đoạn $CC’$, vì $CC’ > AC.$
    • Qua $H$ kẻ đường thẳng song song với $AA’,$ nó cắt $AF$ tại $K$. Từ $K$ kẻ đường thẳng song song với $BH,$ đường thẳng này cắt $BB’$ tại $E.$
    • Thiết diện cần tìm là tam giác $AEF.$

    Ví dụ 2. Cho lăng trụ đứng $ABC.A’B’C’$ có đáy là tam giác nhọn$.$ Mặt phẳng $\left( P \right)$ đi qua $B$ và vuông góc với $A’C$. Biết rằng $CC’ > AC,$ hãy dựng thiết diện của lăng trụ khi cắt bởi mặt phẳng $\left( P \right)$.

    Chuyên đề thiết diện trong hình học không gian 14

    Hướng dẫn. Kẻ đường cao $BH$ của tam giác $ABC$ thì dễ thấy $BH$ vuông góc với $\left( {ACC’A’} \right).$ Do đó $BH$ vuông góc với $CA’$. Mà $\left( P \right)$ chứa $B$ và vuông góc với $CA’$ nên suy ra $BH$ nằm trong mặt phẳng $\left( P \right)$.

    Qua $H$, kẻ đường thẳng $d$ vuông góc với $A’C$. Lúc này có 2 trường hợp có thể xảy ra:

    • Đường thẳng $d$ cắt $CC’$ tại $K$ nằm trong đoạn $CC’$ thì thiết diện là tam giác $BHK$.
    • Đường thẳng $d$ cắt $CC’$ tại $K$ nằm ngoài đoạn $CC’$ và cắt cạnh $A’C’$ tại $M$. Nối $BK$ cắt $B’C’$ tại $N$. Thiết diện là hình thang $BHMN.$

    Ví dụ 3. Hình chóp $S.ABCD$ có đáy là hình vuông, cạnh $SA$ vuông góc với đáy $\left( {ABCD} \right).$ Gọi $\left( P \right)$ là mặt phẳng đi qua $A$ và vuông góc với $SC$. Xác định thiết diện của hình chóp và mặt phẳng $\left( P \right).$

    Chuyên đề thiết diện trong hình học không gian 15

    Hướng dẫn.

    • Gọi $H,K,I$ lần lượt là hình chiếu vuông góc của $A$ lên các cạnh $SB,SC,SD$.
    • Ta có $AK$ vuông góc với $SC$ mà mặt phẳng $\left( P \right)$ chứa $A$ và vuông góc với $SC$ nên suy ra $AK$ nằm trong mặt phẳng $\left( P \right)$.
    • Chứng minh được $AH$ vuông góc với $\left( {SBC} \right)$ nên suy ra $AH \bot SC$. Mà $\left( P \right) \bot SC$, nên suy ra $AH$ cũng nằm trong mặt phẳng $\left( P \right)$.
    • Chứng minh tương tự có $AI$ cũng nằm trong mặt phẳng $\left( P \right)$.
    • Thiết diện là tứ giác $AHKI.$

    Ví dụ 4. Hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, cạnh $SA = a\sqrt 2 $ và vuông góc với đáy. Dựng đường cao $AH$ của tam giác $SAB$. Chứng minh tỉ số $\frac{{SH}}{{SB}} = \frac{2}{3}$. Gọi $\left( P \right)$ là mặt phẳng qua $A$ và vuông góc với $SB$. Mặt phẳng $\left( P \right)$ cắt hình chóp theo thiết diện là hình gì? Tính diện tích thiết diện.

    Chuyên đề thiết diện trong hình học không gian 16

    Hướng dẫn.

    • Chứng minh được $CB$ vuông góc với $\left( {SAB} \right)$ nên suy ra $CB$ vuông góc với $SB$.
    • Mà $\left( P \right)$ vuông góc với $SB$ nên suy ra $CB$ song song với $\left( P \right),CB$ không thể nằm trong mặt phẳng $\left( P \right)$ vì khi đó $A,B,C,D$ đồng phẳng.
    • Qua $H$ kẻ đường thẳng song song với $CB$, nó cắt $SC$ tại $K.$
    • Thiết diện là hình thang $AHKD,$ diện tích bằng $\frac{{5{a^2}\sqrt 6 }}{{18}}$.

    Ví dụ 5. Hình chóp $S.ABCD$ có đáy là hình thang vuông tại $A$ và $B$ với $AB = BC = a,\;AD = 2a$. Cạnh $SA = 2a$ và vuông góc với đáy $\left( {ABCD} \right).$ Gọi $M$ là một điểm trên cạnh $AB$ sao cho $AM = x$ với$\;0\; < \;x\; < \;a$. Giả sử mặt phẳng $\left( P \right)$ là mặt phẳng qua $M$ đồng thời vuông góc với $AB$. Xác định thiết diện của hình chóp với mặt phẳng $\left( P \right)$, thiết diện là hình gì? Tính diện tích thiết diện theo $a$ và $x$.

    Chuyên đề thiết diện trong hình học không gian 17

    Hướng dẫn. Vì $\left( P \right)$ và $SA$ cùng vuông góc với $AB$ nên suy ra $SA$ song song với $\left( P \right).$ Qua $M$ kẻ các đường thẳng song song với $SA,AD$, chúng cắt $SB,CD$ lần lượt tại $M$ và $Q$. Qua $N$ kẻ đường thẳng song song với $AD,$ nó cắt $SC$ tại $P$.

    Thiết diện là hình thang vuông $MNPQ$ có diện tích bằng $2a\left( {a – x} \right)$.

    Ví dụ 6. Hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Cạnh $SA = 2a$ và vuông góc với đáy. Mặt phẳng $\left( P \right)$ qua $B$ và vuông góc với $SC$. Tìm thiết diện của hình chóp với mặt phẳng $\left( P \right)$ và tính diện tích của thiết diện này.

    Chuyên đề thiết diện trong hình học không gian 18

    Hướng dẫn.

    • Gọi $H$ là trung điểm $AC$ thì vì tam giác $ABC$ đều nên có $BH \bot AC$. Mà $BH \bot SA$ nên suy ra $BH \bot \left( {SAC} \right).$
    • Suy ra $BH \bot SC$, tức là $BH$ nằm trong mặt phẳng $\left( P \right).$
    • Qua $H$ kẻ đường thẳng vuông góc với $SC,$ nó cắt $SC$ tại $K$.
    • Thiết diện cần tìm là tam giác $BHK$ vuông tại $H$. Dễ dàng có $BH = \frac{{a\sqrt 3 }}{2}$. Từ tam giác đồng dạng $SAC$ và $HKC$ tính được $HK$ và suy ra diện tích tam giác $BHK$ bằng $\frac{{{a^2}\sqrt {15} }}{{20}}$.

    Ví dụ 7. Hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, cạnh $AB = a$. Cạnh $SA = a\sqrt 3 $ và vuông góc với đáy. Lấy $M$ là một điểm tuỳ ý trên cạnh $AB$, đặt $AM\; = \;x$ với $0\; < \;x\; < \;a.$ Gọi $\left( P \right)$ là mặt phẳng qua $M$ và vuông góc với $AB$. Xác định thiết diện của hình chóp và mặt phẳng$\;\left( P \right)$. Tính diện tích của thiết diện đó theo $a$ và $x$, tìm $x$ để diện tích thiết diện có giá trị lớn nhất.

    Chuyên đề thiết diện trong hình học không gian 19

    Hướng dẫn.

    • Mặt phẳng $\left( P \right)$ chính là mặt phẳng đi qua $M$ và song song với $SA,BC$.
    • Qua $M$ kẻ các đường thẳng song song với $SA,BC$, chúng cắt $SB,AC$ lần lượt tại $N,Q$.
    • Qua $N$ kẻ đường thẳng song song với $BC$, nó cắt $SC$ tại $P$.
    • Thiết diện là hình chữ nhật $MNPQ$ nên diện tích được tính bởi công thức $$s = MN \times MP$$
    • Vì $MN\parallel SA$ nên có $\frac{{MN}}{{SA}} = \frac{{MB}}{{AB}}$ từ đó tính được $MN = \sqrt 3 \left( {a – x} \right)$. Làm tương tự, cũng tính được $MP = x$ và suy ra diện tích thiết diện là $s = \sqrt 3 x\left( {a – x} \right)$. Sử dụng bất đẳng thức Cauchy, chúng ta có $$\sqrt {x\left( {a – x} \right)}  \le \frac{{x + a – x}}{2} = \frac{a}{2}\;$$
    • Từ đó suy ra diện tích lớn nhất là $\frac{{{a^2}\sqrt 3 }}{4}$ đạt được khi $x = \frac{a}{2}$.

    Link tải Chuyên đề thiết diện

    Quý thầy cô tải tại đây chuyen_de_thiet_dien

  • Phương pháp tìm thiết diện bằng phép chiếu xuyên tâm

    Phương pháp tìm thiết diện bằng phép chiếu xuyên tâm

    Phương pháp tìm thiết diện bằng phép chiếu xuyên tâm

    Khi mà học sinh chưa được học về quan hệ song song trong không gian thì bài toán xác định thiết diện của hình chóp khi cắt bởi một mặt phẳng khá hạn chế. Lúc đó, để giải quyết các bài toán mà đáy là hình bình hành, hình thoi, hình chữ nhật… chúng ta phải sử dụng đến phương pháp phép chiếu xuyên tâm (còn được gọi là Phương pháp đường gióng – đường dóng).

    Xem thêm:

    1. Phép chiếu xuyên tâm là gì?

    Phép chiếu xuyên tâm (còn được gọi là phép phối cảnh, tiếng Anh: inner projection) được giới thiệu ngay từ lớp 8, trong chương trình công nghệ – vẽ kỹ thuật.

    Trong không gian, cho một điểm S và một mặt phẳng (P) không đi qua S. Quy tắc biến mỗi điểm M trong không gian thành điểm M’ là giao điểm của mặt phẳng (P) và đường thẳng SM được gọi là phép chiếu xuyên tâm (tâm S) xuống mặt phẳng (P).

    định nghĩa khái niệm phép chiếu xuyên tâm là gì

    • Trong phép chiếu này, các điểm M nằm trong mặt phẳng (Q) đi qua S và song song với (P) thì không có ảnh. Trong chương trình vẽ kỹ thuật, để cho mọi điểm trong không gian đều có ảnh, người ta bổ sung cho (P) một đường thẳng ở vô tận, coi như giao của (P) và (Q).
    • Nếu ta hạn chế chỉ xét phép chiếu trên một mặt (R) nào đó trong không gian thì phép chiếu xuyên tâm nói trên gọi là phép chiếu xuyên tâm (tâm S) từ mặt (R) xuống mặt phẳng (P).
    • Phép chiếu xuyên tâm bảo toàn tỉ số kép.

    2. Các ví dụ xác định thiết diện bằng phép chiếu xuyên tâm

    Bài toán. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $(\alpha)$.

    Phương pháp phép chiếu xuyên tâm (Inner Projection Method)

    • Chọn một tam giác trên mặt phẳng $(\alpha)$, gọi là tam giác cơ sở và xác định hình chiếu của tam giác cơ sở đó lên mặt đáy qua phép chiếu xuyên tâm với tâm là đỉnh của hình chóp.
    • Xác định các giao điểm của tam giác hình chiếu với các cạnh, đường chéo của đáy.
    • Dựa vào quan hệ liên thuộc, tìm các điểm trên mặt phẳng $(\alpha)$ tương ứng với các điểm ở dưới mặt đáy.

    Ví dụ 1. Cho hình chóp $S.ABCD$ có $ C’ $ là một điểm trên cạnh $ SC. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (ABC’). $

    giao tuyen phep chieu xuyen tam

    Hướng dẫn.

    • Rõ ràng vì đáy là một tứ giác bất kỳ, nên có nhiều khả năng kéo dài các cạnh đáy chúng sẽ không thể cắt nhau. Do đó ta không thể sử dụng phương pháp giao tuyến gốc.
    • Trong mặt phẳng $(ABC’)$, ta chọn một tam giác làm tam giác cơ sở, chính là tam giác $ABC’$  luôn. Ta tìm ảnh của nó qua phép chiếu xuyên tâm $S$ lên mặt phẳng đáy, chính là tam giác $ABC$.
    • Tiếp theo, ta xác định giao điểm của tam giác $ABC$ này với các cạnh và đường chéo của đáy. Ta tìm thấy $ O$ là giao điểm của $AC$ và $BD $.
      Lưu ý rằng, điểm $O$ trên mặt phẳng đáy, mà $ O$ thuộc vào cạnh $ AC$, cạnh $ AC$ lại là ảnh của cạnh $ AC’$ qua phép chiếu. Điều này chứng tỏ phải có một điểm nào đó (tạm đặt tên là $ I$), mà qua phép chiếu thì tạo thành điểm $ O$. Mục đích của ta là đi tìm điểm $ I$ này.
    • Trong mặt phẳng $ (SAC) $ giao điểm của $SO$ và $AC’ $ chính là điểm $I$ nói trên. Lúc này, mặt phẳng $ (ABC,)$ xuất hiện một đường thẳng mới là đường thẳng $ BI$, mà đường thẳng này có thể cắt được $ SD.$
    • Trong mặt phẳng $ (SBD) $ gọi $ D’$ là giao điểm của $BI$ và $ SD. $
    • Dễ dàng chỉ ra thiết diện cần tìm là tứ giác $ ABC’D’. $

    Ví dụ 2. Cho hình chóp $S.ABCD$ có ba điểm $ M,N,P $ lần lượt thuộc $ SA,SB,SC. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (MNP). $

    Ví dụ 3. Cho hình chóp $S.ABCD$ có $ M $ là một điểm thuộc miền trong tam giác $ SCD. $ Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng $ (ABM). $

    Ví dụ 4. Cho hình chóp $ S.ABCD $ có đáy là hình bình hành và $ M $ là trung điểm $ SB. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (AMD). $

    Ví dụ 5. Cho hình chóp $S.ABCD$ có $ M $ là một điểm thuộc miền trong tam giác $ SCD. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (ABM). $
    Hướng dẫn.
    Trong mặt phẳng $ (SCD) $ gọi $ E=SM\cap CD, $ trong mặt phẳng $ (ABCD) $ gọi $ F=AC\cap BE, $ trong mặt phẳng $ (SBE) $ gọi $ I=BM\cap SF, $ trong mặt phẳng $ (SAC) $ gọi $ N=AI\cap SC, $ trong mặt phẳng $ (SCD) $ gọi $ H=MN\cap SD. $ Thiết diện là tứ giác $ ABNH. $

    3. Bài tập tìm thiết diện sử dụng phép chiếu xuyên tâm

  • Xác định thiết diện bằng phương pháp giao tuyến gốc

    Xác định thiết diện bằng phương pháp giao tuyến gốc

    Xác định thiết diện bằng phương pháp giao tuyến gốc

    Để xác định thiết diện của một hình chóp khi cắt bởi một mặt phẳng, chúng ta có hai phương pháp là phương pháp xác định thiết diện bằng giao tuyến gốc và xác định thiết diện bằng phép chiếu xuyên tâm. Bài viết này xin trình bày chi tiết phương pháp giao tuyến gốc và các ví dụ vận dụng.

    1. Phương pháp giao tuyến gốc là gì?

    Bài toán. Xác định thiết diện của một hình chóp khi cắt bởi mặt phẳng $(\alpha)$.

    Phương pháp giao tuyến gốc (Trace method).

    phuong phap giao tuyen goc

    • Xác định giao tuyến $ d $ của mặt phẳng $(\alpha)$ với một mặt $ \mathcal{H} $ của hình chóp (thường là với mặt đáy).
    • Tìm các giao điểm của giao tuyến $ d $ với các cạnh, đường chéo của mặt $ \mathcal{H} $.
    • Dựa vào các giao điểm này và giao tuyến $ d, $ tìm tiếp các giao tuyến của mặt phẳng $(\alpha)$ với những mặt còn lại của hình chóp.

    2. Ví dụ tìm thiết diện bằng phương pháp giao tuyến gốc

    Ví dụ 1. Cho hình chóp $S.ABCD$ có đáy không là hình thang. Giả sử $ M $ là một điểm trên $ SD $, xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (ABM).$

    thiet dien dung giao tuyen goc

    Hướng dẫn.

    • Rõ ràng rằng giao tuyến của mặt phẳng $ (ABM)$ với mặt đáy $ (ABCD)$ là đường thẳng $AB$, nên chúng ta lựa chọn đường thẳng $AB$ làm giao tuyến gốc.
    • Tiếp theo, ta xác định các giao điểm của đường thẳng $AB$ với các cạnh của đáy, nếu không được thì sẽ sử dụng đến giao điểm với đường chéo. Vì tứ giác $ ABCD$ không là hình thang nên kéo dài hai đường thẳng $ AB$ và $ CD$ thì chúng sẽ cắt nhau, giả sử là điểm $ I$.
    • Lúc này, đường thẳng $ IM$ nằm trong mặt phẳng $ (SCD)$ nên nó sẽ cắt được đường thẳng $ SC$, giả sử cắt tại điểm $ N$.
    • Rõ ràng, mặt phẳng $ (ABM)$ lần lượt cắt các mặt của hình chóp $S.ABCD$ theo các giao tuyến tạo thành một tứ giác là $ AMNB$ nên thiết diện chính là tứ giác $ AMNB.$

    Ví dụ 2. Cho tứ diện $ ABCD $ có $ M,N $ là trung điểm của $ AB,CD. $ Giả sử $ P $ là một điểm nằm trên cạnh $ AD $ nhưng không là trung điểm. Xác định thiết diện của mặt phẳng $ (MNP) $ và tứ diện.

    Ví dụ 3. Cho tứ diện $ ABCD $ có $ I,J $ lần lượt là trọng tâm các tam giác $ ABC $ và $ ACD. $ Trên cạnh $ AB $ lấy điểm $ K $ sao cho $ AK>BK. $ Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $ (IJK). $

    Ví dụ 4. Cho hình chóp $ S.ABCD $ có điểm $ M $ là trung điểm $ SC,N $ là một điểm trên cạnh $ SD $ sao cho $ SN<DN. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ AMN $.

    Ví dụ 5. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $ M,N,P $ lần lượt là trung điểm của $ BC,CD $ và $ SA. $ Xác định thiết diện của hình chóp và mặt phẳng $ (MNP) $.

    Ví dụ 6. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $ M,N,P $ lần lượt là trung điểm của $ CD,BC $ và $ SB. $ Xác định thiết diện của hình chóp và mặt phẳng $ (MNP) $.

    Hướng dẫn. Trong mặt phẳng $ (ABCD) $ gọi $ E,F $ lần lượt là giao điểm của $ MN $ với $ AB $ và $ AD. $ Trong mặt phẳng $ (SAB) $ gọi $ Q=PE\cap SA, $ trong mặt phẳng $ (SAD) $ gọi $ R=QF\cap SD. $ Thiết diện là ngũ giác $ MNPQR. $

    Ví dụ 7. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $ O. $ Gọi $ M,N $ lần lượt là trung điểm của $ BC,CD. $ Trên đoạn $ SO $ lấy điểm $ P $ sao cho $ SP>OP. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (MNP)$.

    Hướng dẫn. Trong mặt phẳng $ (ABCD) $ gọi $ E,F,G $ lần lượt là giao điểm của $ MN $ với $ AB,AD,AC. $ Trong mặt phẳng $ (SAC) $ gọi $ J= GP\cap SA, $ trong $ (SAB) $ gọi $ K=JE\cap SB, $ trong $ (SAD) $ gọi $ I=JF\cap SD. $ Thiết diện là ngũ giác $ MNIJK. $

    Ví dụ 8. Cho hình chóp $ S.ABCD $ có $ G $ là trọng tâm tam giác $ SCD $ và $ M $ là trung điểm cạnh $ SD. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (AGM)$.

    Ví dụ 9. Cho hình chóp $S.ABCD$ có $ G $ là trọng tâm tam giác $ SCD, H$ là một điểm thuộc cạnh $ SA $ sao cho $ SH>AH. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (CGH). $

    Hướng dẫn. Gọi $ M $ là trung điểm $ SD,E=HM\cap AD,K=CE\cap AB. $ Thiết diện là tứ giác $ CMHK. $

    Ví dụ 10. Cho hình chóp $S.ABCD$ có $ G $ là trọng tâm tam giác $ SCD, H$ là một điểm thuộc cạnh $ SA $ sao cho $ SH<AH. $ Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $ (CGH). $

    Hướng dẫn. Gọi $ M $ là trung điểm $ SD,E=HM\cap AD,F=CE\cap AB,K=HF\cap SB. $ Thiết diện là tứ giác $ CMHK. $

  • Xác định thiết diện sử dụng quan hệ vuông góc trong không gian

    Xác định thiết diện sử dụng quan hệ vuông góc trong không gian

    Phương pháp xác định thiết diện sử dụng quan hệ vuông góc trong không gian

    Xem thêm:

    Bài toán xác định thiết diện, các phương pháp tìm thiết diện của một hình chóp khi cắt bởi một mặt phẳng đã được xét kĩ khi học về quan hệ song song trong không gian. Tuy nhiên, khi học sang chương quan hệ vuông góc trong không gian, học sinh tiếp tục gặp bài toán thiết diện cắt bởi một mặt phẳng mà mặt phẳng đó xác định bởi các kết quả sau đây.

    • Trong không gian, có đúng một mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước.

    thiết diện cắt bởi mặt phẳng đi qua một điểm và vuông góc với một đường thẳng

    • Trong không gian, có đúng một mặt phẳng chứa một đường thẳng và vuông góc với một mặt phẳng cho trước.

    thiết diện sử dụng quan hệ vuông góc trong không gian thiết diện cắt bởi mặt phẳng chứa một đường và vuông góc với một mặt phẳng

    Từ hai kết quả đó, chúng ta có hai bài toán cơ bản sau về thiết diện vuông góc.

    1. Bài toán tìm thiết diện sử dụng quan hệ vuông góc

    1.1. Thiết diện cắt bởi mặt phẳng đi qua một điểm và vuông góc với một đường thẳng

    Bài toán 1. Xác định thiết diện cắt bởi mặt phẳng \((P)\) mà \(P\) đi qua điểm \(M\) và vuông góc với đường thẳng \(d\).

    Cách 1. Ta tìm hai đường thẳng \(a\) và \(b\) cắt nhau và cùng vuông góc với đường thẳng \(d\), trong đó có ít nhất một đường đi qua điểm \( M \). Khi đó mặt phẳng \((P)\) chính là mặt phẳng tạo bởi hai đường thẳng \( a \) và \( b \).

    Cách 2. Ta tìm một mặt phẳng \((Q)\) nào đó vuông góc với đường thẳng \(d\) thì mặt phẳng \((P)\) chính là mặt phẳng đi qua \(M\) và song song với \( (Q) \).

    1.2. Thiết diện cắt bởi mặt phẳng chứa một đường thẳng và vuông góc với một mặt phẳng

    Bài toán 2. Xác định thiết diện tạo bởi mặt phẳng \((P)\) biết \(P\) chứa đường thẳng \( a \) và mặt phẳng \((P)\) vuông góc với mặt phẳng \((Q)\).
    Từ một điểm \( M \) trên đường thẳng \( a \), ta dựng đường thẳng \( b \) vuông góc với mặt phẳng \((Q)\) thì mặt phẳng \((P)\) chính là mặt phẳng tạo bởi \( a \) và \( b \)

    3. Các ví dụ xác định thiết diện vuông góc với một đường thẳng

    Ví dụ 1. Cho tứ diện đều $ABCD$. Xác định thiết diện của tứ diện $ABCD$ và mặt phẳng trung trực của cạnh $BC$.

    Tứ diện đều thiết diện tạo bởi mặt phẳng trung trực của BCHướng dẫn. Gọi \( M \) là trung điểm \( BC \) thì có \( BC \) vuông góc với \( AM \) và \( DM \) nên suy ra \( AMD \) chính là mặt phẳng \((P)\) trung trực của \( BC \). Thiết diện cần tìm là tam giác \( AMD \).

    Ví dụ 2. Cho tứ diện đều $ABCD$. Trên cạnh $BC$ lấy điểm \( F \) sao cho \( BF<FC \). Gọi \( (P) \) là mặt phẳng đi qua \( F \) và vuông góc với cạnh \( BC \). Xác định thiết diện của tứ diện và mặt phẳng \((P)\).

    Tứ diện đều có F thuoc canh BC sao cho BF < FC Xác định thiết diện của tứ diện và mặt phẳng đi qua F đồng thời vuông góc với BC

    Hướng dẫn. Trong mặt phẳng \( (ABC) \) kẻ \( FG \) vuông góc với \( BC \) (điểm \( G \) thuộc \( AB \) và \( GF \) song song với trung tuyến \( AI \)). Trong mặt phẳng \( (BCD) \) kẻ \( FE \) vuông góc với \( BC \) (điểm \( E \) thuộc \( BD \) và \( FE \) song song với \( DI \)).

    Dễ dàng thấy ngay mặt phẳng \((P)\) chính là mặt phẳng \( FEG \) và thiết diện cần tìm chính là tam giác \( FEG \).

    Ví dụ 3. Cho hình lập phương \( ABCD.A’B’C’D’ \) có cạnh bằng \( a \). Tính diện tích của thiết diện khi cắt hình lập phương này bởi mặt phẳng trung trực của đoạn thẳng \( BD’ \).

    Hình lập phương xác định thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD'

    Hướng dẫn. Gọi \( O \) là trung điểm \( BD’ \). Trong mặt phẳng \( (BDD’B’) \), kẻ đường thẳng đi qua \( O \) và vuông góc với \( BD \). Đường thẳng này cắt cạnh \( BD \) và \( B’D’ \) lần lượt tại \( E \) và \( F \). Chú ý rằng điểm \( E \) nằm trong đoạn \( BD \), xem hình vẽ sau để rõ hơn.

    tam giác vuông có O là trung điểm cạnh huyền

    Trong mặt phẳng \((ABCD)\), qua \( E \) kẻ đường thẳng song song với \( AC \), đường thẳng này cắt \( AD \) và \( CD \) lần lượt tại \( M \) và \( N \). Vì \( AC \) vuông góc với mặt phẳng \( (BDD’B’) \) nên suy ra \( MN \) cũng vuông góc với mặt phẳng \( (BDD’B’) \). Do đó, đường thẳng \( MN \) vuông góc với đường thẳng \( BD \).

    Như vậy có $$ \begin{cases} BD\perp EF\\ BD\perp MN \end{cases} $$ nên \( BD \) vuông góc với mặt phẳng chứa \( EF \) và \( MN \). Nói cách khác, mặt phẳng trung trực của \( BD \) chính là mặt phẳng chứa \( EF \) và \( MN \). Từ đó, dựng được thiết diện là lục giác đều màu vàng như trong hình vẽ. Cạnh của lục giác đều có độ dài bằng \( \frac{a\sqrt{2}}{2} \) nên từ đó tính được diện tích là \( \frac{3\sqrt{3}}{4} \).

    Ví dụ 4. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \( a \), tâm là điểm \( O \). Cạnh \( SA=a\sqrt{2} \) và vuông góc với đáy. Gọi \( H \) là hình chiếu vuông góc của \( A \) lên \( SB \). Xác định thiết diện và tính diện tích thiết diện tạo bởi hình chóp và

    • Mặt phẳng \((P)\) đi qua \( H \) và vuông góc với \( SB \).
    • Mặt phẳng \((Q)\) đi qua \( B \) và vuông góc với \( SC \).

    Hướng dẫn.

    Hình chóp S.ABCD đáy là hình vuông thiết diện cắt bởi mặt phẳng qua H và vuông góc với SB

    Mặt phẳng \((P)\) vuông góc với \( SB \) nên mặt phẳng \((P)\) chứa \( AH \). Trong mặt phẳng \( (SBC) \) kẻ đường thẳng qua \( H \) và vuông góc với \( SB \), đường thẳng này cắt \( SC \) tại \( M \) thì \( HM \) song song với \( BC \).

    Mặt khác có \( AD \) vuông góc với \( SB \) (do \( AD \) vuông góc với mặt phẳng \( (SAB) \)) nên suy ra mặt phẳng \((P)\) chính là mặt phẳng chứa \( AH,HM,AD \) và thiết diện cần tìm chính là hình thang \( AHMD \).

    Hình chóp S.ABCD đáy là hình vuông mặt phẳng qua B và vuông góc với SC

    Dễ chứng minh được \( BD \) vuông góc với \( SC \) nên suy ra mặt phẳng \((Q)\) chứa \( BD \). Từ \( O \) kẻ \( OK \) vuông góc với \( SC \) tại \( K \). Thiết diện cần tìm chính là tam giác \( BDK \).

    Ví dụ 5. Cho hình chóp \( S.ABCD \) có đáy \( ABCD \) là hình thang vuông tại \( A \), đáy lớn \( AD=8 \) cm, \( BC = 6 \) cm. Cạnh \( SA =6\) cm và vuông góc với mặt phẳng \( (ABCD) \). Gọi \( M \) là trung điểm của cạnh \( AB \). Giả sử \( (P) \) là mặt phẳng đi qua \( M \) và vuông góc với \( AB \). Tính diện tích thiết diện tạo bởi \( (P) \) và hình chóp \( S.ABCD \).

    Hình chóp S.ABCD đáy là hình thang vuông M là trung điểm AB

    Hướng dẫn. Dễ thấy \( AB \) vuông góc với mặt phẳng \( (SAD) \) nên suy ra mặt phẳng \((P)\) và \( SAD \) song song với nhau. Từ đó suy ra cách dựng như sau. Từ \( M \) kẻ \( MN \) song song với \( SA \), \( N \) thuộc \( SB \). Từ \( N \) kẻ \( NE \) song song với \( BC \), \( E \) thuộc \( SC \). Từ \( M \) kẻ \( MF\) song song với \( AD \), \( F \) thuộc \( CD \).
    Thiết diện cần tìm là hình thang vuông \( MNEF \).

    Có \( MN=\frac{1}{2}SA=3 \) cm, \( NE=\frac{1}{2}BC=3 \) cm, \( MF=\frac{BC+AD}{2}=7 \) cm. Do đó, diện tích hình thang vuông \( MNEF \) là
    $$ MN\cdot \frac{NE+MF}{2}=15 $$

    Ví dụ 6. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và cạnh $SA$ vuông góc với đáy $\left(ABCD\right).$ Gọi $\left( \alpha \right)$ là mặt phẳng qua $A$ vuông góc với $SC.$ Xác định thiết diện của hình chóp cắt bởi mặt phẳng $\left( \alpha \right).$

    Hình chóp S.ABCD đáy là hình vuông mặt phẳng qua A và vuông góc với SC

    Hướng dẫn. Giả sử $\left( \alpha \right)$ cắt $SC$ tại $H$. Khi đó $AH \subset \left( \alpha \right) \bot SC $ nên suy ra $AH$ vuông góc với $SC.$

    • Vì $BD \bot \left( {SAC} \right)$ nên suy ra $BD $ vuông góc với $ SC.$
    • Mà $\left( \alpha \right) $ vuông góc với $SC.$

    Suy ra, mặt phẳng $ \left( \alpha \right)\parallel BD.$ Do đó, chúng ta có được giao tuyến của hai mặt phẳng $ \left( \alpha \right) $ và $\left( {SBD} \right)$ là đường thẳng $ d$ song song với $BD.$

    Mặt khác gọi $O$ là tâm hình vuông và $E$ là giao điểm của $AH $ và $SO $ thì $E $ phải thuộc vào đường thẳng $d.$

    Suy ra giao tuyến $d$ chính là đường thẳng đi qua $E$, song song với $BD$ và lần lượt cắt $SB,SD$ tại $M,N$. Vậy thiết diện cần tìm là tứ giác $AMHN.$

    3. Các ví dụ xác định thiết diện vuông góc với một mặt phẳng

    Ví dụ 7. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \( a \), tâm là điểm \( O \). Cạnh \( SA=a\sqrt{2} \) và vuông góc với đáy. Xác định thiết diện và tính diện tích thiết diện tạo bởi hình chóp và  mặt phẳng \((P)\) chứa \( AB \) và vuông góc với \( (SCD) \).

    Hình chóp S.ABCD hình vuông mặt phẳng chứa AB và vuông góc với (SCD)

    Hướng dẫn. Ta cần dựng một đường thẳng cắt \( AB \) và vuông góc với \( (SCD) \). Chú ý rằng mặt phẳng \( (SCD) \) và \( (SAD) \) vuông góc và cắt nhau theo giao tuyến \( AD \). Nên để dựng một đường thẳng vuông góc với \( (SCD) \), cách dễ nhất là trong mặt phẳng \( (SAD) \) ta dựng một đường thẳng vuông góc với giao tuyến này.

    Trong mặt phẳng \( (SAD) \), hạ \( AH \) vuông góc với \( SD \) tại \( H \) thì dễ chứng minh được \( AH \) vuông góc với \( (SCD) \). Do đó, mặt phẳng \((P)\) chính là mặt phẳng xác định bởi hai đường thẳng cắt nhau \( AB \) và \( AH \). Từ \( H \) dựng đường thẳng song song với \( CD \), cắt \( SC \) tại \( K \). Thiết diện cần tìm là hình thang \( ABKH \).

    Ví dụ 8.  Cho hình chóp \( S.ABCD \) với \( ABCD \) là hình chữ nhật tâm \( O \) và \( AB = a \), \( AD = 2a \). Cạnh \( SA =a\) và vuông góc với đáy. Gọi \( (P) \) là mặt phẳng chứa \( SO \) và vuông góc với \( (SAD) \). Tính diện tích thiết diện tạo bởi mặt phẳng \((P)\) và hình chóp \( S.ABCD \).

    Hình chóp S.ABCD đáy là hình chữ nhật tâm O mặt phẳng chứa SO và vuông góc với (SAD)

    Hướng dẫn. Nhận xét rằng \( AB \) vuông góc với \( (SAD) \) nên để dựng một đường thẳng vuông góc với mặt phẳng \( (SAD) \) ta chỉ việc kẻ song song với \( AB\). Qua \( O \) kẻ đường thẳng song song với \( AB \), đường thẳng này cắt \( BC,AD \) lần lượt tại \( E,F \). Thiết diện cần tìm chính là tam giác \( SEF \).

    Tam giác \( SEF \) vuông tại \( F \) nên dễ dàng tính được diện tích bằng \( \frac{a^2\sqrt{2}}{2} \).

    Ví dụ 9. Cho lăng trụ đứng \( ABC.A’B’C’ \) có đáy \( ABC \) là tam giác vuông tại \( B \). Gọi \(M\) và \(N\) lần lượt là trung điểm \( BC \) và \( BB’ \). Giả sử \( (P) \) là mặt phẳng chứa \( MN \) và vuông góc với mặt phẳng \( (BCC’B’) \). Xác định thiết diện của lăng trụ khi cắt bởi mặt phẳng \((P)\).

     

    Cho lăng trụ đứng có M là trung điểm BC N là trung điểm BB' mặt phẳng chứa MN và vuông góc với (BCC'B')

    Hướng dẫn. Dễ thấy \( AB \) vuông góc với mặt phẳng \( (BCC’B’) \) nên suy ra \( AB \) song song với mặt phẳng \((P)\). Do đó, cách dựng thiết diện như sau:

    • Qua \( M \) kẻ đường thẳng song song với \( AB \), đường thẳng này cắt \( AC \) tại trung điểm \( Q \).
    • Qua \( N \) kẻ đường thẳng song song với \( AB \), đường thẳng này cắt \( AA’ \) tại trung điểm \( P \).

    Thiết diện cần tìm là hình thang \( MNPQ \).

  • Thiết diện là gì và các phương pháp tìm thiết diện

    Thiết diện là gì và các phương pháp tìm thiết diện

    Thiết diện là gì là một câu hỏi thường xuyên xuất hiện trong các đề thi của chương trình lớp 11. Đây là một bài toán gây khó khăn cho rất nhiều em học sinh khi mới bước đầu tiếp xúc với hình học không gian. Bài viết này, O2 Education sẽ giúp các em học sinh trả lời được câu hỏi thế nào là thiết diện của một hình chóp khi cắt bởi một mặt phẳng. Đồng thời, chúng tôi xin giới thiệu hai cách xác định thiết diện của hình chóp, đó là phương pháp giao tuyến gốc và phương pháp phép chiếu xuyên tâm.

    Thiết diện là gì và các phương pháp tìm thiết diện 20CHUYÊN ĐỀ THIẾT DIỆN FILE PDF
    Thiết diện là gì và các phương pháp tìm thiết diện 21

    Mời các em học sinh lớp 11 xem thêm:

    1. Thiết diện của một hình là gì?

    Định nghĩa: Thiết diện (hay mặt cắt) của hình H khi cắt bởi mặt phẳng (P) là phần chung nhau của mặt phẳng (P) và hình H. Tìm thiết diện tức là tìm hình dạng mặt cắt này, thường là một đa giác như tam giác, tứ giác… Như trong hình vẽ sau thì thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNP) chính là ngũ giác MKNPQ (được tô màu xanh lá cây).

    thiet dien la gi cách tim thiet dien

    Giải đáp chi tiết cho câu hỏi thế nào là thiết diện, mời các em xem trong video sau:

    https://www.youtube.com/watch?v=MNIP5U5AfGs

    2. Cách để xác định thiết diện làm như thế nào?

    Để xác định thiết diện của một hình chóp khi cắt bởi một mặt phẳng, ta có hai phương pháp tìm thiết diện chính là phương pháp giao tuyến gốcphương pháp phép chiếu xuyên tâm.

    Xem thêm: Cách tìm giao tuyến của hai mặt phẳng

    Nếu bài viết hữu ích, bạn hãy tặng tôi 1 cốc cafe vào số tài khoản Agribank 3205215033513.  Xin cảm ơn!

    Với các bài toán liên quan thiết diện, học sinh cần nắm vững kiến thức cơ bản như sau:

    • Khái niệm thiết diện (mặt cắt): Cho hình T và mặt phẳng (P), phần mặt phẳng của (P) nằm trong T được giới hạn bởi các giao tuyến sinh ra do (P) cắt một số mặt của T được gọi là thiết diện (mặt cắt).
    • Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng nếu có cũng song song với hai đường thẳng ấy hoặc trùng một trong hai đường thẳng đó.
    • Hai mặt phẳng phân biệt cùng song song một đường thẳng thì giao tuyến của chúng nếu có cũng song song với đường thẳng đó.

    Các cách xác định mặt phẳng: Biết ba điểm không thẳng hàng; hai đường thẳng cắt nhau; một điểm nằm ngoài một đường thẳng; hai đường thẳng song song.

    Lưu ý.

    • Giả thiết mặt phẳng cắt là (P), hình đa diện là T. Dựng thiết diện là bài toán dựng hình nhưng chỉ cần nêu phần dựng và phần biện luận nếu có.
    • Đỉnh của thiết diện là giao của mặt phẳng (P) và các cạnh của hình T nên việc dựng thiết diện thực chất là tìm giao điểm của (P) và các cạnh của T.
    • Mặt phẳng (P) có thể không cắt hết các mặt của T. Các phương pháp dựng thiết diện được đưa ra tùy thuộc dạng giả thiết của đầu bài.

    Chúng ta cùng thực hành bằng một bài toán sau:

    Bài tập 1. Cho hình chóp S.ABC có M, N lần lượt là trung điểm của SA, SB. P là điểm trên cạnh SC sao cho SP lớn hơn PC (tức là MP không song song với AC). Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).

    https://www.youtube.com/watch?v=y5ljnpx5gc8

    Các bài toán liên quan thiết diện thường là: Tính diện tích thiết diện; tìm vị trí mặt phẳng (P) để thiết diện có diện tích lớn nhất, nhỏ nhất; thiết diện chia khối đa diện thành 2 phần có tỉ số cho trước.(hoặc tìm tỉ số giữa 2 phần).

    3. Một số phương pháp tìm thiết diện nhanh nhất

    Mặt phẳng (P) cho dạng tường minh: Ba điểm không thẳng hàng, hai đường thẳng cắt nhau hoặc một điểm nằm ngoài một đường thẳng…

    Phương pháp giao tuyến gốc.

    • Trước tiên, tìm cách xác định giao tuyến của (P) với một mặt của T (giao tuyến này thường được gọi là giao tuyến gốc).
    • Trên mặt phẳng này của T, tìm thêm giao điểm của giao tuyến gốc và các cạnh của T nhằm tạo ra thêm một số điểm chung.
    • Lặp lại quá trình này với các mặt khác của T cho tới khi tìm được thiết diện.

    Bài tập 2. Cho hình chóp S.ABCD có đáy là hình vuông (hoặc hình bình hành). Gọi M, N,P lần lượt là trung điểm của BC,CD,SA. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).

    https://www.youtube.com/watch?v=Aag4lMyGRqI

    Các ví dụ về phương pháp giao tuyến gốc xin mời xem tại đây

    Phương pháp phép chiếu xuyên tâm

    Mời thầy cô và các em học sinh xem trong bài viết sau Xác định thiết diện bằng phép chiếu xuyên tâm.