Category: Đại số

  • Toán 9 – Giải bài toán bằng cách lập hệ phương trình

    Toán 9 – Giải bài toán bằng cách lập hệ phương trình

    Giải bài toán bằng cách lập hệ phương trình lớp 9

    Giải bài toán bằng cách lập hệ phương trình lớp 9 là một dạng toán quan trọng, thường xuyên xuất hiện trong các đề thi học kì, bài kiểm tra, đề thi tuyển sinh vào lớp 10. Để giải được dạng toán lập hệ phương trình ở lớp 9, học sinh cần nắm được 2 cách giải hệ phương trình bậc nhất là phương pháp cộng đại số và phương pháp thế. Ngoài ra, kỹ năng quan trọng là cách đặt ẩn và biểu thị mối quan hệ giữa các ẩn để có được một hệ phương trình.

    1. Phương pháp giải bài toán bằng cách lập hệ phương trình

    Cách giải một bài toán bằng cách lập hệ phương trình, chúng ta thực hiện các bước sau:

    • Bước 1: Lập hệ phương trình.
      • Biểu diễn hai đại lượng phù hợp bằng ẩn số $x$ và $y$ (thường đặt ẩn số là những đại lượng đề bài yêu cầu cần tìm, ví dụ yêu cầu tính chiều dài và chiều rộng của mảnh vườn thì chúng ta sẽ đặt $x$ là chiều dải mảnh vườn, $y$ là chiều rộng mảnh vườn…). Sau đó, đặt đơn vị và điều kiện của ẩn một cách thích hợp (ví dụ độ dài, thời gian hoàn thành công việc thì không thể là số âm…).
      • Biểu thị các đại lượng chưa biết còn lại qua ẩn.
      • Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng và thành lập hệ hai ẩn từ các phương trình vừa tìm.
    • Bước 2: Giải hệ phương trình nói trên.
    • Bước 3: Kiểm tra nghiệm tìm được thỏa mãn điều kiện của bài toán và nêu kết luận của bài toán.

    2. Các dạng toán giải bài toán bằng cách lập hệ phương trình thường gặp:

    Dạng 1: Chuyển động (trên đường bộ, trên đường sông có tính đến dòng nước chảy)

    Đối với dạng toán này, cần chú ý đến điều kiện của ẩn:

    • Nếu gọi $x$ là vận tốc của chuyển động thì điều kiện là $x>0$.
    • Đặt thời gian chuyển động là $y$ thì điều kiện là $y \ge 0$.
    • Một số công thức:
      • Quãng đường bằng vận tốc nhân thời gian, s=v.t;
      • Vận tốc khi nước đứng yên = vận tốc riêng;
      • Vận tốc xuôi dòng = vận tốc riêng + vận tốc dòng nước;
      • Vận tốc ngược dòng = vận tốc riêng – vận tốc dòng nước.
    • Nếu hai xe đi ngược chiều nhau cùng xuất phát khi gặp nhau lần đầu:
      • Thời gian hai xe đi được là như nhau,
      • Tổng quãng đường 2 xe đi được bằng đúng quãng đường cần đi của 2 xe.
    • Cách đổi đơn vị thời gian, vận tốc:
      • 1 h (1 giờ) = 60 phút.
      • 1 (m/s) = 3,6 (km/h), vì 1 m = 1/1000 km và 1 s = 1/3600 giờ.
      • 1 (km/h) = 5/18 (m/s).

    Ví dụ 1. Hai thị xã A và B cách nhau 90 km. Một chiếc ô-tô khởi hành từ A và một xe máy khởi hành từ B cùng một lúc ngược chiều nhau. Sau khi gặp nhau ô-tô chạy thêm 30 phút nữa thì đến B, còn xe máy chạy thêm 2 giờ nữa mới đến A. Tìm vận tốc của mỗi xe.

    Hướng dẫn. Gọi vận tốc của ô-tô và xe máy lần lượt là $x$ và $y$ (đơn vị km/h, điều kiện $x > 0, y > 0$). Giả sử hai xe gặp nhau tại C. Do ô-tô đi hết quãng đường BC trong 30 phút (bằng 0,5 giờ) và xe máy đi hết quãng đường CA trong 2 giờ nên ta có:

    • Quãng đường AC dài $2y$ (km), quãng đường BC dài $0,5x$ (km).
    • Thời gian ôtô đi hết quãng đường AC là $\frac{2y}{x}$ (km/h).
    • Thời gian xe máy đi trên quãng đường BC là $0,5\frac{x}{y}$ (km/h).
    • Do tổng quãng đường AB dài 90km và thời gian hai xe từ lúc xuất phát tới C bằng nhau nên ta có hệ phương trình \[\begin{array}{l} \left\{ {\begin{array}{*{20}{l}} {0,5x + 2y = 90}\\ {\frac{{0,5x}}{y} = \frac{{2y}}{x}} \end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {0,5x + 2y = 90}\\ {{x^2} = 4{y^2}} \end{array}} \right. \end{array}\] Vì \( x,y>0 \) nên từ phương trình \( {{x^2} = 4{y^2}} \) suy ra $x = 2y$. Thay vào phương trình còn lại của hệ, ta được $$3y = 90 \Leftrightarrow y = 30$$ Suy ra, $x = 60$ (thỏa mãn điều kiện $x, y > 0$).
    • Vậy, vận tốc của ôtô là 60km/h và vận tốc của xe máy là 30km/h.

    Dạng 2: Toán làm chung – làm riêng (Bài toán vòi nước)

    Ví dụ 1. Hai vòi nước cùng chảy đầy một bẻ không có nước trong 3h 45ph . Nếu chảy riêng rẽ , mỗi vòi phải chảy trong bao lâu mới đầy bể? biết rằng vòi chảy sau lâu hơn vòi trước 4 h.

    Hướng dẫn. 

    • Gọi thời gian vòi đầu chảy chảy một mình đầy bể là x (điều kiện x > 0 , x tính bằng giờ)
    • Gọi thời gian vòi sau chảy chảy một mình đầy bể là  y (điều kiện y > 4 , y tính bằng giờ)
    • Suy ra, trong 1 giờ vòi đầu chảy được $\frac{1}{x}$ bể, vòi sau chảy được $\frac{1}{y}$ bể.
    • Sau 1 giờ, cả hai vòi chảy được

    $\frac{1}{x}+\frac{1}{y}$ bể

    • Hai vòi cùng chảy thì đầy bể trong 3h 45ph = 15/4 h, nên trong 1 giờ thì cả hai vòi chảy được

    $1 : \frac{15}{4} = \frac{4}{15} $ bể.

    • Suy ra, ta có phương trình

    $\frac{1}{x}+\frac{1}{y} = \frac{4}{15}$

    • Mặt khác, nếu chảy một mình thì vòi sau chảy lâu hơn vòi trước 4 giờ tức là $y – x = 4$ nên ta có hệ phương trình $$\begin{cases} \frac{1}{x}+\frac{1}{y} = \frac{4}{15}\\ y – x = 4 \end{cases}$$
    • Giải hệ phương trình này tìm được $x=6,y=10$.
    • Vậy, vòi đầu chảy một mình đầy bể trong 6 h; vòi sau chảy một mình đầy bể trong 10 h.

    Ví dụ 2.  Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được $\frac{2}{3}$ bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể.

    Hướng dẫn. 

    • Gọi thời gian vòi thứ nhất chảy một mình đầy bể là $x$ (giờ), thời gian vòi thứ hai chảy một mình đầy bể là $y$ (giờ). Điều kiện x, y>5.
    • Suy ra, trong 1 giờ vòi đầu chảy được $\frac{1}{x}$ bể, vòi sau chảy được $\frac{1}{y}$ bể. Sau 1 giờ, cả hai vòi chảy được

    $\frac{1}{x}+\frac{1}{y}$ bể

    • Mà theo đề bài, cả hai vòi nước cùng chảy vào bể không có nước thì trong 5 giờ sẽ đầy bể nên trong một giờ cả hai vòi chảy được $\frac{1}{5}$ bể. Do đó ta có phương trình $$\frac{1}{x}+\frac{1}{y}=\frac{1}{5}$$
    • Mặt khác, nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được $\frac{2}{3}$ bể nên ta
      có phương trình $$3.\frac{1}{x}+4.\frac{1}{y}=\frac{2}{3}$$
    • Do đó, ta có hệ phương trình $$\begin{cases} \frac{1}{x}+\frac{1}{y}=\frac{1}{5}\\ \frac{3}{x}+\frac{4}{y}=\frac{2}{3} \end{cases}.$$
    • Giải hệ phương trình này tìm được $x=7,5$ và $y=15$ (thỏa mãn điều kiện).
    • Vậy thời gian vòi thứ nhất chảy một mình đầy bể là 7,5 giờ, thời gian vòi thứ hai chảy một mình đầy bể là 15 giờ.

    Ví dụ 3. Lớp 9A và lớp 9B cùng lao động tổng vệ sinh sân trường thì sau 6 giờ sẽ hoàn thành xong công việc. Nếu làm riêng thì lớp 9A mất nhiều thời gian hơn lớp 9B là 5 giờ mới hoàn thành xong công việc. Hỏi nếu làm riêng, mỗi lớp cần bao nhiêu thời gian để hoàn thành xong công việc?

    Hướng dẫn. 

    • Gọi thời gian lớp 9A, 9B hoàn thành xong công việc là $x$ (giờ) và $y$ (giờ), điều kiện $x>5,y>0$.
    • Trong 1 giờ, lớp 9A làm được: $\frac{1}{x}$ (công việc), lớp 9B làm được $\frac{1}{y}$ (công việc). Nên trong 1 giờ, cả 2 lớp làm được

    $\frac{1}{x}+\frac{1}{y}$ công việc.

    • Mà theo đề bài, cả hai lớp cùng lao động tổng vệ sinh sân trường thì sau 6 giờ sẽ hoàn thành xong công việc nên ta có phương trình $$\frac{1}{x}+\frac{1}{y}=\frac{1}{6}$$
    • Nếu làm riêng thì lớp 9A mất nhiều thời gian hơn lớp 9B là 5 giờ mới hoàn thành xong công việc. Tức là $x-y=5$.
    • Do đó, ta có hệ phương trình $$\begin{cases} \frac{1}{x}+\frac{1}{y} = \frac{1}{6}\\ x-y=5 \end{cases}$$
    • Giải hệ phương trình này bằng phương pháp thế, tìm được $y=-3$ (loại) hoặc $y=10$ (thỏa mãn). Từ đó tìm được $x=15$.

    Dạng 3: Toán liên quan đến tỉ lệ phần trăm.

    Chú ý cách tính tỉ lệ phần trăm.

    Ví dụ 1.  Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm
    được giao của mỗi tổ theo kế hoạch?

    Hướng dẫn. 

    • Gọi $x,y$ là số sản phẩm của tổ I, II theo kế hoạch, điều kiện x, y nguyên dương và x < 600; y < 600.
    • Theo kế hoạch hai tổ sản xuất 600 sản phẩm nên ta có phương trình: $$x+y=600.$$
    • Số sản phẩm tăng thêm của tổ I là: $ \frac{18}{100} x$ sản phẩm. Số sản phẩm tăng của tổ II là: $ \frac{18}{100} y$ sản phẩm.
    • Do số sản phẩm của hai tổ vượt mức 120 (sản phẩm) nên ta có phương trình $$\frac{18}{100}x + \frac{21}{100}y = 120. $$
    • Từ đó ta có hệ phương trình $$\left\{\begin{array}{l} x+y=600 \\ \frac{18}{100} x+\frac{21}{100} y=120 \end{array}\right.$$
    • Giải hệ này tìm được $x=200, y=400$ (thỏa mãn điều kiện).

    Ví dụ 3. Trong tháng giêng hai tổ sản xuất được 720 chi tiết máy. Trong tháng hai, tổ I vượt mức 15%, tổ II vượt mức 12% nên sản xuất được 819 chi tiết máy. Tính xem trong tháng giêng mỗi tổ sản xuất được bao nhiêu chi tiết máy?

    Hướng dẫn. 

    Ví dụ 4. Năm ngoái tổng số dân của hai tỉnh A và B là 4 triệu người. Dân số tỉnh A năm nay tăng 1,2%, còn tỉnh B tăng 1,1%. Tổng số dân của cả hai tỉnh năm nay là 4 045 000 người. Tính số dân của mỗi tỉnh năm ngoái và năm nay?

    Hướng dẫn. 

    Dạng 4: Toán có nội dung hình học.

    • Khi đặt ẩn là độ dài các đoạn thẳng, độ dài các cạnh thì điều kiện của ẩn là không âm.
    • Diện tích hình chữ nhật $S = x.y$, với $ x$ là chiều rộng; $y$ là chiều dài.
    • Diện tích tam giác $S=\frac{1}{2}a.h_a$ với $a$ là độ dài một cạnh tam giác và $h_a$ là chiều cao ứng với cạnh đó.
    • Định lý Pitago trong tam giác vuông với độ dài cạnh huyền là $c$, độ dài hai cạnh góc vuông là $a,b$ thì $$a^2+b^2=c^2.$$

    Ví dụ 1.  Một mảnh vườn hình chữ nhật có chu vi 34 m. Nếu tăng chiều dài thêm 3 m và tăng chiều rộng thêm 2 m thì diện tích tăng thêm 45m2. Hãy tính chiều dài, chiều rộng của mảnh vườn.

    Hướng dẫn.

    • Gọi chiều rộng và chiều dài của mảnh vườn là lần lượt là $x$ và $y$ (đơn vị m, điều kiện $x > 0, y > 0$).
    • Theo đề bài ta có, chu vi hình chữ nhật là: $$2(x + y) = 34$$
    • Khi tăng chiều dài thêm 3 m và tăng chiều rộng thêm 2 m thì ta được một hình chữ nhật mới có chiều dài $(y + 3)$ m, chiều rộng $(x +2)$ m nên có diện tích là $(x + 2)(y + 3)$.
    • Do hình chữ nhật mới có diện tích tăng thêm 45 m2 nên ta có phương trình: $$(x+2)(y+3)= xy + 45 $$ Từ đó, ta có hệ phương trình: \[\left\{ \begin{array}{l} 2\left( {x{\rm{ }} + {\rm{ }}y} \right){\rm{ }} = {\rm{ }}34\\ \left( {x + 2} \right)\left( {y + 3} \right) = {\rm{ }}xy{\rm{ }} + {\rm{ }}45 \end{array} \right.\] Giải hệ phương trình này tìm được $x=5$ và $y=12$.
    • Vậy, hình chữ nhật đã cho có chiều dài $12$ m và chiều rộng $5$ m.

    Ví dụ 2. Cho một hình chữ nhật. Nếu tăng chiều dài lên 10 m, tăng chiều rộng lên 5 m thì diện tích tăng 500 m2. Nếu giảm chiều dài 15 m và giảm chiều rộng 9 m thì diện tích giảm 600 m2. Tính chiều dài, chiều rộng ban đầu.

    Hướng dẫn. 

    Ví dụ 3. Cho một tam giác vuông. Nếu tăng các cạnh góc vuông lên 2 cm và 3 cm thì diện tích tam giác tăng 50 cm2. Nếu giảm cả hai cạnh đi 2 cm thì diện tích sẽ giảm đi 32 cm2. Tính hai cạnh góc vuông.

    Hướng dẫn. 

    Dạng 5: Toán về tìm số.

      • Số có hai, chữ số được ký hiệu là $\overline{ab} $, điều kiện $1 \le q \le 9; 0\le b \le 9; a,b \in \mathbb{N}$.
      • Giá trị của số: $\overline{ab} = 10a+b$.
      • Số có ba, chữ số được ký hiệu là $\overline{abc}$ thì $\overline{abc} = 100a +10b + c$,  điều kiện $1 \le q \le 9; 0\le b,c \le 9; a,b,c \in \mathbb{N}$.
      • Tổng hai số $x; y$ là: $x+ y$.
      • Tổng bình phương hai số $x, y$ là: $x^2+y^2$.
      • Bình phương của tổng hai số $x, y$ là: $(x+y)^2$.
      • Tổng nghịch đảo hai số $x, y$ là: $\frac{1}{x}+\frac{1}{y}$.

    Ví dụ 1.  Cho số tự nhiên có hai chữ số, tổng của chữ số hàng chục và chữ số hàng đơn vị bằng 14. Nếu đổi chữ số hàng chục và chữ số hàng đơn vị cho nhau thì được sốmới lớn hơn số đã cho 18 đơn vị. Tìm số đã cho.

    Hướng dẫn.

    • Gọi chữ số số cần tìm là $\overline{xy}$, điều kiện $x ,y\in \mathbb{N}, 0 < x \le  9, 0 \le y \le 9$.
    • Tổng chữ số hàng chục và chữ số hàng đơn vị bằng 14 nên có phương trình: $$x+y=14.$$
    • Đổi chữ số hàng chục và chữ số hàng đơn vị cho nhau thì được số mới lớn hơn số đã cho 18 đơn vị nên có phương trình: $\overline{yx}-\overline{xy}=18$ hay  chính là $$10y+x-(10x+y)=18$$
    • Do đó, ta có hệ phương trình $$\begin{cases} x+y=14 \\ 10y+x-(10x+y)=18 \end{cases}$$
    • Giải hệ này, tìm được $x=6,y=8$ (thỏa mãn điều kiện) nên số cần tìm là $68$.

    Ví dụ 2. Tìm một số tự nhiên có hai chữ số. Biết rằng chữ số hàng đơn vị hơn chữ số hàng chục là 5 đơn vị và khi viết chữ số 1 xen vào giữa hai chữ số của số đó thì ta được số mới lớn hơn số đó là 280 đơn vị .

    Hướng dẫn.

    • Gọi chữ số hàng chục là $a$, chữ số hàng đơn vị là $b$, điều kiện $a,b\in \mathbb{N}; 1\le a\le 9; 0\le b\le 9$.
    • Số cần tìm là $\overline{ab}$ có giá trị $\overline{ab}=10a+b$.
    • Ta có chữ số hàng đơn vị hơn chữ số hàng chục là 5 đơn vị nên ta có phương trình: $$ b-a=5$$
    • Lại có, khi viết chữ số 1 xen vào giữa hai chữ số của số đó thì ta được số mới là $\overline{a1b}$ có giá trị $\overline{a1b}=100a+10+b$.
    • Do số mới lớn hơn số ban đầu là 280 đơn vị nên ta có phương trình: $$100a+10+b-(10a+b)=280$$
    • Ta có hệ phương trình $$\left\{\begin{array}{l} -a+b=5 \\ (100 a+10+b)-(10 a+b)=280\end{array}\right.$$
    • Giải hệ này, tìm được $a=3,b=8$ đều thỏa mãn điều kiện nên số cần tìm là $38$.

    Ví dụ 3. Tìm một số tự nhiên có hai chữ số, tổng các chữ số bằng 11, nếu đổi chỗ hai chữ số hàng chục và hàng đơn vị cho nhau thì số đó tăng thêm 27 đơn vị.

    Hướng dẫn.

    Ví dụ 4.  Tìm một số có hai chữ số, biết rằng số đó gấp 7 lần chữ số hàng đơn vị của nó và nếu số cần tìm chia cho tổng các chữ số của nó thì được thương là 4 và số dư là 3.

    Hướng dẫn.

    3. Bài tập giải bài toán bằng cách lập hệ phương trình

    Bài 1. Nếu tử số của một phân số được tăng gấp đôi và mẫu số thêm 8 thì giá trị của phân số bằng $\frac{1}{4}$. Nếu tử số thêm 7 và mẫu số tăng gấp 3 thì giá trị phân số bằng $\frac{5}{24}$. Tìm phân số đó.

    Bài 2. Nếu thêm 4 vào tử và mẫu của một phân số thì giá trị của phân số giảm 1. Nếu bớt 1 vào cả tử và mẫu, phân số tăng $\frac{3}{2}$. Tìm phân số đó.

    Bài 3: Tìm hai số có tổng bằng $31$ và có hiệu bằng $9$.

    Bài 4: Tìm một số tự nhiên có hai chữ số. Biết rằng số đó gấp bảy lần chữ số hàng đơn vị và nếu đem số đó chia cho tổng các chữ số của nó thì được thương là $4$ và dư là $3$.

    Bài 5: Một người đi xe đạp từ A đến B gồm đoạn lên dốc AC và đoạn xuống dốc CB. Thời gian đi AB là 4 giờ 20 phút, thời gian về BA là 4 giờ. Biết vận tốc lên dốc là 10 km/h và vận tốc xuống dốc là 15 km/h. Tính AC, CB.

    Bài 6: Hai ôtô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ôtô thứ nhất chạy nhanh hơn ôtô thứ hai là 10 km nên đến B trước ôtô thứ hai là 2/5 giờ. Tính vận tốc của mỗi ôtô?

    Bài 7: Lúc 7 h, một người đi xe máy khởi hành từ A với vận tốc 40 km/h. Sau đó, lúc 8h30’ một người khác cũng đi xe máy từ A đuổi theo với vận tốc 60 km/h. Hỏi hai người gặp nhau lúc mấy giờ?

    Bài 8: Một tàu thủy chạy trên khúc sông dài 80 km, cả đi lẫn về mất 8h20’. Tính vận tốc của tàu thủy khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/h.

    Bài 9: Hai ca nô cùng khởi hành từ hai bến A và B cách nhau 85 km đi ngược chiều nhau. Sau 1 giờ 40 phút thì gặp nhau. Tính vận tốc riêng của mỗi ca nô, biết rằng vận tốc ca nô đi xuôi lớn hơn vận tốc ca nô đi ngược 9km/h và vận tốc dòng nước là 3 km/h.

    Bài 10: Một ca nô xuôi từ bến A đến bến B với vận tốc trung bình 30 km/h, sau đó lại ngược từ B trở về A. Thời gian đi xuôi ít hơn thời gian đi ngược là 40 phút. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc dòng nước là 3 km/h và vận tốc riêng của ca nô không đổi.

    Bài 11: Một canô chạy trên sông trong 8 giờ, xuôi dòng 81km và ngược dòng 105km. Một lần khác cũng trên dòng sông đó, canô này chạy trong 4 giờ,xuôi dòng 54km và ngược dòng 42km. Hãy tính vận tốc khi xuôi dòng và vận tốc khi ngược dòng của ca nô, biết vận tốc dòng nước và vận tốc riêng của ca nô không đổi.

    Bài 12: Một ô tô dự định đi từ A đến B trong một thời gian đã định. Nếu ô tô tằng vận tốc thêm 3km/h thì đến B sớm hơn 2 giờ. Nếu ô tô giảm vận tốc đi 3km/h thì sẽ đến B chậm hơn 3 giờ. Tính quãng đường AB.

    Bài 13: Để hoàn thành một công việc, hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ hai được điều đi làm việc khác, tổ một đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ làm xong công việc đó?

    Bài 14: Theo kế hoạch hai tổ sản xuất 600 sản phẩm. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ theo kế hoạch?

    Bài 15: Hai đội công nhân cùng làm chung một công việc. Thời gian để đội I làm một mình xong công việc ít hơn thời gian đội II làm một mình xong công việc đó là 4 giờ. Tổng thời gian này gấp 4,5 lần thời gian hai đội cùng làm chung để xong công việc đó. Hỏi mỗi đội nếu làm một mình thì phải bao lâu mới làm xong công việc?

    Bài 16: Một khu vườn hình chữ nhật có chiều dài bằng 7/4 chiều rộng và có diện tích bằng 1792m2. Tính chu vi của khu vườn ấy.

    Bài 17: Có hai loại dung dịch chứa cùng một thứ axit, loại thứ nhất chứa 30% axit, loại thứ hai chứa 5% axit. Muốn có 50 lit dung dịch chứa 10% axit thì cần phải trộn lẫn bao nhiêu lít dung dịch của mỗi loại?

    Bài 18: Giải hệ phương trình $$\left\{ \begin{array}{l} \left( {3x – 1} \right)\left( {2y + 3} \right) = \left( {2x – 1} \right)\left( {3y + 4} \right)\\ {x^2} – {y^2} = 2x – 5 \end{array} \right.$$

    Bài 19: Giải phương trình: $\left| {x + 1} \right| + 2\left| {x – 1} \right| = x + 2 + \left| x \right| + 2\left| {x – 2} \right|$.

    Bài 20: Với giá trị nào của $k$, hệ phương trình sau có nghiệm $$\left\{ \begin{array}{l} x + \left( {1 + k} \right)y = 0\\ \left( {1 – k} \right)x + ky = 1 + k \end{array} \right.$$

  • Toán 10 – Khái niệm hàm số. Hàm số là gì?

    Toán 10 – Khái niệm hàm số. Hàm số là gì?

    Toán 10 – Khái niệm hàm số lớp 10. Hàm số là gì?

    1. Hàm số là gì?

    Hàm số chính là các quy tắc áp dụng trên các số. Nếu một đại lượng $y$ phụ thuộc vào một đại lượng thay đổi $x$ mà với một giá trị của $x$ ta luôn xác định được một và chỉ một giá trị tương ứng của $y$ thì $y$ được gọi là hàm số của $x$, và $x$ gọi là biến số. Nói chung hàm số xuất hiện khi có một đại lượng số nào đó phụ thuộc vào một đại lượng số khác. Các em đã được làm quen với hàm số từ lớp 7, lớp 9.

    1.1. Khái niệm hàm số

    Định nghĩa hàm số: Cho $ \mathbb{D} $ là tập con khác rỗng của $ \mathbb{R}. $ Hàm số $ f $ xác định trên $ \mathbb{D} $ là một quy tắc cho tương ứng mỗi số $ x\in \mathbb{D} $ với một và chỉ một số thực $ y $ gọi là giá trị của hàm số $ f $ tại $ x, $ kí hiệu $ y=f(x). $

    Tập $ \mathbb{D} $ gọi là tập xác định (miền xác định, domain), $ x $ là đối số (biến số) của hàm số $ f, $ ta viết
    \begin{align*}
    f: \mathbb{D}& \longrightarrow \mathbb{R}\\
    x\, &\longmapsto y=f(x)
    \end{align*}

    $ T=\left\{y=f(x)|x\in \mathbb{D} \right\} $ được gọi là tập giá trị hoặc miền giá trị của hàm số.

    1.2. Cách cho một hàm số

    Một hàm số có thể được cho bằng bốn cách: Mô tả bằng lời, cho bằng bảng giá trị, cho bằng đồ thị, hoặc cho bằng công thức tường minh.

    Khi một hàm số được cho bởi công thức $ y=f(x) $ thì tập xác định của nó là tập hợp tất cả các số thực $ x $ sao cho biểu thức $ f(x) $ có nghĩa, tức là tập tất cả các giá trị của biến số $x$ mà có thể tính được giá trị $y$ tương ứng của hàm số (tính được giá trị $ f(x) $).

    1.3. Đồ thị của hàm số

    Đồ thị của hàm số bậc hai
    Đồ thị của hàm số bậc hai

    Một trong những cách thường dùng nhất để minh họa một hàm số là sử dụng đồ thị. Nếu $ f $ là một hàm số có tập xác định $ \mathbb{D} $ thì đồ thị của nó là tập hợp $ (G) $ các điểm có tọa độ $\left( x;f(x) \right)$ với $x \in \mathbb{D}$.

    Từ đó, điểm $M\left( {{x}_{0}};{{y}_{0}} \right)\in (G) $khi và chỉ khi ${{x}_{0}}\in \mathbb{D}$ và ${{y}_{0}}=f({{x}_{0}})$. Mỗi hàm số có một đồ thị duy nhất và ngược lại đồng thời qua đồ thị của một hàm số, ta có thể nhận biết được hầu hết các tính chất của hàm số đó.

    1.4. Hàm số đồng biến, nghịch biến

    Cho hàm số $ y = f(x) $ xác định trên khoảng $ (a,b)\subset \mathbb{R}. $

    • Hàm số $ f $ gọi là đồng biến (tăng) trên khoảng $ (a,b) $ nếu với mọi $ x_1,x_2\in (a,b) $ mà $ x_1<x_2 $ thì $ f(x_1)<f(x_2). $
    • Hàm số $ f $ gọi là nghịch biến (giảm) trên khoảng $ (a,b) $ nếu với mọi $ x_1,x_2\in (a,b) $ mà $ x_1<x_2 $ thì $ f(x_1)>f(x_2). $
    • Hàm số $ f $ gọi là không đổi (hàm số hằng) trên khoảng $ (a,b) $ nếu  $f(x)=const$ với mọi $ x\in (a,b) $.

    Thông thường, để xét sự biến thiên của hàm số trên khoảng $ (a,b) $ ta xét tỉ số $ \frac{f(x_2)-f(x_1)}{x_2-x_1} $ với $ x_1\ne x_2\in (a,b). $

    1.5. Tính chẵn lẻ của hàm số

    Cho hàm số $ y=f(x) $ xác định trên miền $ \mathbb{D}. $

    • Hàm số $ f(x) $ được gọi là hàm số chẵn nếu với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathbb{D} $ và $ f(-x)=f(x) $
    • Hàm số $ f(x) $ được gọi là hàm số lẻ nếu với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathbb{D} $ và $ f(-x)=f(x) $

    Chú ý, đồ thị hàm số chẵn nhận trục tung làm trục đối xứng; đồ thị hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

    2. Các dạng toán hàm số lớp 10

    2.1. Tìm tập xác định của hàm số

    Xem chi tiết dạng toán tìm TXĐ tại đây Toán 10 – Tìm tập xác định của hàm số

    2.2. Xét tính chẵn lẻ của hàm số lớp 10

    Xem bài chi tiết tại đây Xét tính chẵn lẻ của hàm số lớp 10

    2.3. Xét tính đồng biến nghịch biến của hàm số

    Các em học sinh xem tại đây Toán 10 – Xét sự biến thiên của hàm số

    2.4. Tìm tập giá trị của hàm số

    2.5. Vẽ đồ thị hàm số

  • Toán 10 – Xét sự biến thiên của hàm số

    Toán 10 – Xét sự biến thiên của hàm số

    Xét sự biến thiên của hàm số lớp 10

    Với hàm số cho bởi công thức $y=f(x)$, chúng ta có hai đại lượng thay đổi là $x$ và $y$. Nếu chúng thay đổi “cùng chiều” (cùng tăng hoặc cùng giảm) ta có hàm số đồng biến, nếu chúng thay đổi “ngược chiều” ta có hàm số nghịch biến. Do sự thay đổi của $y$ phụ thuộc vào $x$ nên ta có thể chọn $x$ thay đổi từ nhỏ đến lớn để xét sự thay đổi của $y$.

    Xem thêm:

    1. Xét sự biến thiên của hàm số

    1.1. Khái niệm hàm số đồng biến, nghịch biến

    Cho hàm số $y=f(x)$ xác định trên $\mathbb{K}$ (là một khoảng, nửa khoảng hay đoạn).

    • Hàm số đó được gọi là đồng biến (hay tăng) trên K nếu: $\forall {{x}_{1}},{{x}_{2}}\in \mathbb{K},{{x}_{1}}<{{x}_{2}}$ thì có $f({{x}_{1}})<f({{x}_{2}})$.
    • Hàm số đó được gọi là nghịch biến (hay giảm) trên K nếu: $\forall {{x}_{1}},{{x}_{2}}\in \mathbb{K},{{x}_{1}}<{{x}_{2}}$ thì có $f({{x}_{1}})>f({{x}_{2}})$.

    Khảo sát sự biến thiên của hàm số là xét xem hàm số đồng biến, nghịch biến hoặc có thể không đổi trên các khoảng (nửa khoảng hay đoạn) nào đó trong tập xác định của nó.

    hàm số đồng biến
    Đồ thị của hàm số đồng biến

    Xét theo hướng từ trái qua phải (tức là chiều tăng của đối số $x$) thì:

    • Đồ thị hàm số đồng biến có hướng đi lên (tăng).
    • Đồ thị hàm số nghịch biến có hướng đi xuống (giảm).

    Từ định nghĩa, ta có các cách xét tính đồng biến, nghịch biến của hàm số $y=f(x)$  trên $\mathbb{K}$.

    1.2. Cách xét sự đồng biến nghịch biến của hàm số

    Cách 1. Xét sự đồng biến nghịch biến của hàm số bằng định nghĩa. Sử dụng giả thiết ${{x}_{1}},{{x}_{2}}\in \mathbb{K}$ bất kỳ ${{x}_{1}}<{{x}_{2}}$, đánh giá trực tiếp và so sánh $f(x_1)$ với $f(x_2)$.

    Ví dụ 1. Xét tính đồng biến, nghịch biến của hàm số $y=\sqrt{1-2x}$ trên $\left( -\infty ,\frac{1}{2} \right]$.

    Ta có, $\forall {{x}_{1}},{{x}_{2}}\in \left( -\infty ,\left. \frac{1}{2} \right] \right.,{{x}_{1}}<{{x}_{2}}$ thì $$1-2{{x}_{1}}>1-2{{x}_{2}}\geqslant 0 \Rightarrow \sqrt{1-2{{x}_{1}}}>\sqrt{1-2{{x}_{2}}}$$ hay hàm số nghịch biến trên $\left( -\infty ,\frac{1}{2} \right]$.

    Cách 2. Xét sự đồng biến nghịch biến của hàm số bằng xét dấu tỷ số biến thiên $$T=\frac{f({{x}_{2}})-f({{x}_{1}})}{{{x}_{2}}-{{x}_{1}}}$$ với ${{x}_{1}},{{x}_{2}}\in \mathbb{K}$ bất kỳ và ${{x}_{1}}\ne {{x}_{2}}$.

    • Nếu $T > 0$ thì hàm số đồng biến trên $\mathbb{K}$;
    • Nếu $T < 0$ thì hàm số nghịch biến trên $\mathbb{K}$.

    Ví dụ 1. Khảo sát sự biến thiên của các hàm số $y = f(x) = x + 3$.

    Hướng dẫn.

    • Tập xác định $ \mathcal{D}=\mathbb{R}.$
    • Với mọi $x_1, x_2 \in \mathbb{R}$ và $ x_1 \ne x_2$ ta có: \begin{align} T&= \frac{{f({x_1}) – f({x_2})}}{{{x_1} – {x_2}}}\\ &= \frac{{({x_1} + 3) – ({x_2} + 3)}}{{{x_1} – {x_2}}} = 1 > 0, \forall x\in \mathbb{R} \end{align}
    • Vậy, hàm số đồng biến trên $ \mathbb{R}$.

    Ví dụ 2. Khảo sát sự biến thiên của các hàm số $ y = f(x) = x^3 + 2x + 8.$

    Hướng dẫn.

    • Tập xác định $ \mathcal{D}=\mathbb{R}.$
    • Với mọi $x_1, x_2 \in \mathbb{R}$ và $ x_1 \ne x_2$ ta có: \begin{align}
      T &= \frac{{f({x_1}) – f({x_2})}}{{{x_1} – {x_2}}}\\
      &= \frac{{(x_1^3 + 2{x_1} + 8) – (x_2^3 + 2{x_2} + 8)}}{{{x_1} – {x_2}}}\\
      &= \frac{{(x_1^3 – x_2^3) + (2{x_1} – 2{x_2})}}{{{x_1} – {x_2}}}\\
      &= x_1^2 + x_2^2 + x_1x_2 + 2\\
      &= \frac{1}{2}(x_1 + x_2)^2 + \frac{1}{2}(x_1^2 + x_2^2) + 2 > 0, \forall x\in \mathbb{R}.
      \end{align}
    • Vậy, hàm số đồng biến trên $ \mathbb{R}$.

    Ví dụ 3. Xét sự biến thiên của hàm số $y=\dfrac{3x+1}{x-2}$ trên các khoảng $\left( -\infty ;\,2 \right)$ và $\left( 2;+\infty  \right)$.

    Xét tỉ số biến thiên \begin{align} T&=\frac{y_1-y_2}{x_1-x_2}\\ &=\frac{\frac{3{{x}_{1}}+1}{{{x}_{1}}-2}-\frac{3{{x}_{2}}+1}{{{x}_{2}}-2}}{{{x}_{1}}-{{x}_{2}}}\\ &=\frac{\left( 3+\frac{7}{{{x}_{1}}-2} \right)-\left( 3+\frac{7}{{{x}_{2}}-2} \right)}{{{x}_{1}}-{{x}_{2}}}\\& =-\frac{7}{\left( {{x}_{1}}-2 \right)\left( {{x}_{2}}-2 \right)}
    \end{align}

    Suy ra với ${{x}_{1}},{{x}_{2}}\in \left( -\infty ;\,2 \right)$ hoặc ${{x}_{1}},{{x}_{2}}\in \left( 2;+\infty  \right)$ thì $T < 0$ nên hàm số nghịch biến trên các khoảng $\left( -\infty ;\,2 \right)$,$\left( 2;+\infty  \right)$.

    Cũng có thể xét tính đồng biến, nghịch biến của hàm số một cách gián tiếp thông qua tính đồng biến nghịch biến của các hàm số quen thuộc hoặc đã được xét trước đó.

    Chẳng hạn ta dễ dàng có các tính chất sau: tổng của hai hàm số đồng biến (nghịch biến) trên $\mathbb{K}$ là một hàm số đồng biến (nghịch biến) trên đó; tích của hai hàm số đồng biến và nhận giá trị dương trên $\mathbb{K}$ là một hàm số đồng biến trên đó…

    Ví dụ 4. Khảo sát sự biến thiên của hàm số $y = f(x) = \sqrt {{x^2} + 2}$.

    Hướng dẫn.

    • Tập xác định $ \mathcal{D}=\mathbb{R}$.
    • Với $ x_1, x_2 \in \mathcal{D} $ và $ x_1 \ne x_2$ ta có: \begin{align}
      T&=\frac{{f({x_1}) – f({x_2})}}{{{x_1} – {x_2}}}\\
      &=\frac{{\sqrt {x_1^2 + 2} – \sqrt {x_2^2 + 2} }}{{{x_1} – {x_2}}}\\
      &=\frac{{(x_1^2 + 2) – (x_2^2 + 2)}}{{({x_1} – {x_2})(\sqrt {x_1^2 + 2} + \sqrt {x_2^2 + 2} )}}\\
      &=\frac{{{x_1} + {x_2}}}{{\sqrt {x_1^2 + 2} + \sqrt {x_2^2 + 2} }}.
      \end{align}
    • Khi đó:
      • Nếu $x_1, x_2 >$ 0 thì $ T > 0$ và do đó hàm số đồng biến trên $ (0; +\infty)$.
      • Nếu $ x_1, x_2 < 0$ thì $ T < 0$ suy ra hàm số nghịch biến trên $ (-\infty; 0)$.

    Ví dụ 5. Khảo sát sự biến thiên của hàm số hàm số $y={{x}^{3}}+\sqrt{2x+3}$ trên tập xác định của nó.

    Hướng dẫn. Ta có hàm số đã cho có tập xác định là $\mathcal{D}=\left[ -\frac{3}{2};+\infty  \right)$.

    Các hàm số $y={{x}^{3}}$ và $y=\sqrt{2x+3}$ đều là các hàm số đồng biến trên $\mathcal{D}$ nên hàm số $y={{x}^{3}}+\sqrt{2x+3}$ là hàm số đồng biến trên $\mathcal{D}$.

    Ví dụ 6. Khảo sát sự biến thiên của hàm số:

    1. $f(x)={{x}^{3}}\sqrt{2x-3}$;
    2. $g(x)={{x}^{3}}\sqrt{2x+3}$.

    2. Các ví dụ khảo sát sự biến thiên của hàm số lớp 10

    Bài 1. Xét sự biến thiên của hàm số sau trên khoảng $(1; +\infty)$

    • $y = \frac{3}{x-1}$
    • $y = x + \frac{1}{x}$

    Bài 2. Xét sự biến thiên của hàm số sau trên tập xác định của nó:

    • $y = \sqrt{3x-1}+\sqrt{x}$
    • $y = x^3 +\sqrt{x}$

    Bài 3. Xét tính đồng biến, nghịch biến của các hàm số sau trên khoảng được chỉ ra

    • $f(x)=-2x^2-7$ trên khoảng $(-4,0)$ và trên khoảng $(3,10)$;
    • $f(x)=\frac{x}{x-7}$ trên khoảng $(-\infty,7)$ và trên khoảng $(7,+\infty)$;
    • $y=-3x+2$ trên $\mathbb{R}$;
    • $y=x^2+10x+9$ trên khoảng $(-5,+\infty)$;
    • $y=-\frac{1}{x+1}$ trên khoảng $(-3,-2)$ và $(2,3)$.

    Bài 4. Xét tính đồng biến hay nghịch biến của các hàm số trên khoảng cho trước:

    • $y=\sqrt{x}$ trên $\left( 0;+\infty \right)$;
    • $y=\frac{1}{x+2}$ trên $\left( -\infty ;-2 \right)$;
    • $y={{x}^{2}}-3x$ trên $\left( 2;+\infty \right)$;
    • $y={{x}^{3}}+2x-1$ trên $\left( -\infty ;+\infty \right)$;
    • $y={{x}^{3}}-3x$ trên $\left( 1;+\infty \right)$;
    • $y=\sqrt{{{x}^{2}}-1}+x$ trên $\left( 1;+\infty \right)$.

    Bài 5. Xét sự biến thiên của hàm số $ y=\frac{x}{x-2} $ trên tập xác định của nó.

    Bài 6. Xét sự biến thiên của hàm số $ y=\big| x+|2x-1|\big|$ trên tập xác định của nó.

  • Xét tính chẵn lẻ của hàm số lớp 10

    Xét tính chẵn lẻ của hàm số lớp 10

    Xét tính chẵn lẻ của hàm số lớp 10

    Xem thêm:

    1. Hàm số chẵn hàm số lẻ là gì?

    Cho hàm số $ y=f(x) $ xác định trên miền $ \mathcal{D}. $

    • Hàm số $ f(x) $ được gọi là hàm số chẵn nếu nó thỏa mãn 2 điều kiện sau:
      • Với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathcal{D} $
      • $ f(-x)=f(x), \,\forall x\in \mathcal{D} $
    • Hàm số $ f(x) $ được gọi là hàm số lẻ nếu nếu nó thỏa mãn 2 điều kiện sau:
      • Với mọi $ x\in \mathbb{D} $ thì $ -x\in \mathcal{D} $
      • $ f(-x)=-f(x), \,\forall x\in \mathcal{D} $

    Chú ý:

    • Một tập $\mathcal{D}$ thỏa mãn điều kiện $\forall x\in \mathbb{D} $ thì $ -x\in \mathcal{D} $ được gọi là một tập đối xứng.
    • Đồ thị hàm số chẵn nhận trục tung làm trục đối xứng (ví dụ hàm số $y=x^2$ là hàm số chẵn); đồ thị hàm số lẻ nhận gốc tọa độ làm tâm đối xứng (ví dụ hàm số $y=x$ là hàm số lẻ).

    xét tính chẵn lẻ của hàm số, đồ thị hàm số chẵn hàm số lẻ

    • Một hàm số có thể không chẵn cũng không lẻ.

    đồ thị hàm số không chẵn không lẻ
    Đồ thị của một hàm số không chẵn không lẻ

    2. Các ví dụ Xét tính chẵn lẻ của hàm số lớp 10

    Cách xét tính chẵn lẻ của hàm số được thực hiện qua 3 bước sau:

    1. Tìm tập xác định của hàm số.
    2. Kiểm tra
      • Nếu $\forall x\in \mathbb{D} \Rightarrow -x\in \mathbb{D}$ thì chuyển qua bước tiếp theo.
      • Nếu $ \exists x_0\in \mathbb{D} $ mà $ -x_0\not\in \mathbb{D}$ thì kết luận hàm không chẵn cũng không lẻ.
    3. Tính $f(-x)$ và so sánh với $f(x)$ để kết luận:
      • Nếu $f(-x) = f(x)$ thì kết luận hàm số là chẵn.
      • Nếu $f(-x)=-f(x)$ thì kết luận hàm số là lẻ.
      • Nếu tồn tại một giá trị  $ x_0\in \mathbb{D}$ mà $f(-x_0)\ne \pm f(x_0)$ thì kết luận hàm số không chẵn cũng không lẻ.

    Ví dụ 1. Xét tính chẵn lẻ của hàm số $y = f(x) = x^3 + x$.

    Lời giải. 

    • TXĐ: $\mathcal{D}=\mathbb{R}$
    • Ta có, với mọi $x\in \mathbb{D} $ thì cũng có $-x\in \mathbb{D}$ (điều kiện thứ nhất được thỏa mãn)
    • Với mọi  $x\in \mathbb{D} $ ta có $$f(-x) = (-x)^3 + (-x) = -( x^3 + x)= -f(x).$$ Kết luận: Hàm số $y = f(x) = x^3 + x$ là hàm số lẻ.

    Ví dụ 2. Xét tính chẵn lẻ của hàm số $f(x) = x^4 + 2$.

    Lời giải.

    • TXĐ: $\mathcal{D}=\mathbb{R}$
    • Ta có, với mọi $x\in \mathbb{D} $ thì cũng có $-x\in \mathbb{D}$ (điều kiện thứ nhất được thỏa mãn).
    • Với mọi  $x\in \mathbb{D} $ ta có $$f(-x) = (-x)^4+2 = x^4+2=f(x).$$ Suy ra, hàm sốđã cho là hàm số chẵn.

    Ví dụ 3. Xét tính chẵn lẻ của hàm số $y=\sqrt{x+1}+2$.

    Lời giải.

    • Điều kiện xác định: $$x+1 \geqslant 0 \Leftrightarrow x \geqslant -1$$ Suy ra, TXĐ: $\mathcal{D}= [-1; +\infty)$$
    • Tập $\mathcal{D} $ này không thỏa mãn điều kiện $\forall x\in \mathbb{D} \Rightarrow -x\in \mathbb{D}$. Thật vậy, xét số $x_0=5$ thuộc vào $\mathcal{D}$ nhưng $-x_0$ là $-5$ lại không thuộc $\mathcal{D}$.
    • Kết luận: Hàm số đã cho không chẵn, không lẻ.

    Ví dụ 4. Xét tính chẵn lẻ của hàm số $ y=\sqrt{x+5}+\sqrt{5-x}$.

    Hướng dẫn.

    • Tìm được tập xác định $\mathcal{D} = [-5;5]$.
    • Với mọi $x \in  [-5;5]$ ta có $-x \in [-5;5]$.
    • Có $f(-x)=\sqrt{(-x)+5}+\sqrt{5-(-x)}=\sqrt{x+5}+\sqrt{5-x}=f(x)$.
    • Kết luận: Hàm số đã cho là hàm số chẵn.

    Ví dụ 5. Xét tính chẵn lẻ của hàm số $ y=\sqrt{x+5}+\frac{1}{\sqrt{5-x}}$.

    Hướng dẫn.

    • Tìm được tập xác định $\mathcal{D} = [-5;5)$.
    • Với mọi $x \in  [-5;5]$ thì ta không có $-x \in [-5;5]$. Thật vậy, xét một số $x_0=-5\in [-5;5)$ nhưng $-x_0=-(-5)=5$ lại không thuộc $[-5;5)$.
    • Kết luận: Hàm số đã cho là hàm số không chẵn không lẻ.

    3. Bài tập Xét tính chẵn lẻ của hàm số lớp 10

    Bài 1. Hàm số sau là hàm số chẵn hay hàm số lẻ, vì sao”

    1. $ f(x)=x+\frac{1}{x}$
    2. $ f(x)=\frac{1}{|x|+1}+x^2$
    3. $ f(x)=\sqrt{x-3}+5$
    4. $ f(x)=x^4+x^6+|x|$
    5. $ f(x)=|x-2|$

    Bài 2. Xác định tính chẵn lẻ của các hàm số sau:

    1. $f\left( x \right)=\frac{{{x}^{3}}+5x}{{{x}^{2}}+4}.$
    2. $f\left( x \right)=\frac{{{x}^{2}}+5}{{{x}^{2}}-1}.$
    3. $f\left( x \right)=\sqrt{x+1}-\sqrt{1-x}.$
    4. $f\left( x \right)=\frac{x-5}{x-1}.$
    5. $f\left( x \right)=3{{x}^{2}}-2x+1.$
    6. $f\left( x \right)=\frac{{{x}^{3}}}{\left| x \right|-1}.$
    7. $f(x)=\frac{\left| x-1 \right|+\left| x+1 \right|}{\left| 2x-1 \right|+\left| 2x+1 \right|}.$
    8. $f(x)=\frac{\left| x+2 \right|+\left| x-2 \right|}{\left| x-1 \right|-\left| x+1 \right|}$

    Bài 3. Xét tính chẵn lẻ của hàm số $$ f(x)=\frac{2x}{x^2-4}$$

    Bài 4. Xét tính chẵn lẻ của hàm số $$ f(x)=\frac{1}{\sqrt{x^2-x+1}-\sqrt{x^2+x+1}} $$

    Bài 5. Xét tính chẵn lẻ của hàm số $$ f(x)=\frac{x^2}{x^2-3x+2} $$

    Bài 6. Xét tính chẵn lẻ của hàm số $$ f(x)=\sqrt{2+x}-\sqrt{2-x} $$

    Bài 7. Xét tính chẵn lẻ của hàm số $$ f(x)=\dfrac{x}{\sqrt{1-x}-\sqrt{1+x}} $$

    Bài 8. Cho hàm số $y=f\left( x \right)$, $y=g\left( x \right)$ có cùng tập xác định $D$. Chứng minh rằng:

    • Nếu hai hàm số trên lẻ thì hàm số $y=f\left( x \right)+g\left( x \right)$ là hàm số lẻ.
    • Nếu hai hàm số trên một chẵn, một lẻ thì hàm số $y=f\left( x \right)g\left( x \right)$ là hàm số lẻ.

    Bài 9. Tìm $m$ để hàm số: $y=f\left( x \right)$ $=\frac{x\left( {{x}^{2}}-2 \right)+2m-1}{x-2m+1}$ là hàm số chẵn.

    Bài 10. Chứng minh rằng với hàm số $f(x)$ bất kỳ, $ f(x)$ có thể biểu diễn duy nhất dưới dạng tổng của một hàm số chẵn và một hàm số lẻ.

     

  • Toán 10 – Tìm tập xác định của hàm số

    Toán 10 – Tìm tập xác định của hàm số

    Tìm tập xác định của hàm số

    Bài chi tiết về hàm số xin mời xem Khái niệm hàm số. Xem thêm các dạng toán lớp 10:

    1. Tập xác định của hàm số là gì?

    Đối với một hàm số cho bởi công thức $y=f(x)$ thì tập xác định (TXĐ) của hàm số là tập tất cả các giá trị của $x$ mà có thể tính được giá trị $y$ tương ứng, tức là tìm tập các giá trị của $x$ để biểu thức $f(x)$ có nghĩa (xác định).

    Ví dụ, xét hàm số $y=\frac{1}{x-5}$. Số $5$ không thuộc tập xác định của hàm số vì khi ta thay $x=5$ vào biểu thức $\frac{1}{x-5}$ thì không tính được (biểu thức không xác định). Số $3$ thuộc tập xác định vì khi thay $x=3$ vào ta tính được kết quả là $y=-\frac{1}{2}$. Ngoài ra, đối với hàm số này chúng ta thấy có rất nhiều giá trị khác thuộc tập xác định, như $1,2,4,-1,-5…$. Nhiệm vụ của chúng ta là phải tìm tất cả các giá trị này.

    Để tìm TXĐ của hàm số $y=f(x)$ chúng ta đi tìm tập các giá trị của $x$ mà biểu thức $f(x)$ có nghĩa (xác định). Lưu ý rằng:

    • $ \frac{A}{B} $ xác định khi $ B\ne 0,$
    • $ \sqrt{A}$ xác định khi $ A\ge 0,$
    • $ \frac{A}{\sqrt{B}} $ xác định khi $ B>0. $
    • $AB \ne 0 \Leftrightarrow \left\{ \begin{array}{l}A \ne 0\\B \ne 0\end{array} \right.$

    Chú ý, cần viết tập xác định của hàm số dưới dạng khoảng đoạn.

    2. Các ví dụ tìm tập xác định của hàm số

    Ví dụ 1. Tìm tập xác định của hàm số sau:

    1. $f(x)=\sqrt{x-3}$
    2. $g(x)=\frac{x+3}{x^2-4}$
    3. $ h(x)= 2\sqrt{x-1}-\frac{3}{|x|-2}$

    Hướng dẫn. 

    1. Hàm số đã cho xác định khi và chỉ khi $$ x-3 \geqslant 0 \Leftrightarrow  x \geqslant 3$$ Kết luận: TXĐ $ \mathbb{D}=[3,+\infty) $.
    2. Hàm số đã cho xác định khi và chỉ khi $$ x^2-4 \ne 0 \Leftrightarrow  x \ne \pm2$$ Kết luận: TXĐ $ \mathbb{D}=\mathbb{R}\setminus\{\pm 2\} $.
    3. Hàm số đã cho xác định khi và chỉ khi $$ \begin{cases} x-1 \geqslant 0\\ |x|-2\ne 0 \end{cases} \Leftrightarrow \begin{cases}
      x \geqslant 1\\ x\ne \pm 2 \end{cases} \Leftrightarrow \begin{cases} x \geqslant 1\\ x\ne 2 \end{cases}$$ Kết luận: TXĐ $ \mathbb{D}=[1,2)\cup(2,+\infty) $.

    Ví dụ 2. Tìm tập xác định của hàm số $$ f(x)= \sqrt{2x-3}+\frac{x+2}{\sqrt{3-x}}$$

    Hướng dẫn. Hàm số đã cho xác định khi và chỉ khi $$ \begin{cases} 2x-3 \geqslant 0\\ 3-x >0 \end{cases} \Leftrightarrow \begin{cases} x \geqslant \frac{3}{2}\\ x<3 \end{cases}$$ Kết luận. TXĐ $ \mathbb{D}=[\frac{3}{2},3) $.

    Ví dụ 3. Tìm tập xác định của hàm số $$ f(x)= \sqrt{x^2-2x+3}+\frac{1}{|x|+1}$$

    Hướng dẫn. Hàm số đã cho xác định khi và chỉ khi $$ \begin{cases} x^2-2x+3 \geqslant 0 \\ |x|+1 \ne 0 \end{cases}\Leftrightarrow \begin{cases} (x-1)^2+2\geqslant 0 \\ |x|+1 \ne 0 \end{cases}$$ Các điều kiện này đều luôn luôn đúng với mọi số thực $x$ do đó, tập xác định của hàm số là $ \mathbb{D}=\mathbb{R} $.

    Ví dụ 4. Tìm $ m $ để hàm số $ f(x)=\frac{2x}{x-m+1} $ xác định trên $ (0,2). $

    Hướng dẫn.  Hàm số đã cho xác định khi và chỉ khi $$ x\ne m-1$$Do đó, muốn hàm số xác định trên $ (0,2) $ thì $ m-1$ không được nằm trong khoảng $ (0,2). $ Tức là $$ \left[\begin{array}{l} m-1 \leqslant 0\\ m-1 \geqslant 2 \end{array}\right. $$ Từ đó tìm được đáp số $ m\leqslant 1 $ hoặc $ m \geqslant 3. $

    Ví dụ 5. Tìm $ m $ để hàm số $ f(x)= \sqrt{x-m+1}+\sqrt{2x-m} $ xác định với mọi $ x>0. $

    Hướng dẫn. Hàm số đã cho xác định khi và chỉ khi $$ \begin{cases} x -m+1\geqslant 0\\ 2x-m \geqslant 0 \end{cases} \Leftrightarrow \begin{cases} x \geqslant m-1\\ x \geqslant \frac{m}{2} \end{cases}$$Do đó, muốn hàm số xác định với mọi $ x>0$ thì $$ \begin{cases} m-1 \leqslant 0\\ \frac{m}{2} \leqslant 0 \end{cases} $$ Từ đó tìm được đáp số $ m \leqslant 0. $

    Ví dụ 6. Cho hàm số $$ f(x)=\begin{cases} 2x-1 &\text{ khi } -2\le x<0\\ -x &\text{ khi } 0\le x<1 \\ -2x+1 &\text{ khi } 1\le x<3 \end{cases} $$ Tìm tập xác định của hàm số và tính $ f(0),f(-1),f(1),f(2). $

    Hướng dẫn. Tập xác định của hàm số là $ \mathbb{D}=[-2;3). $

    3. Bài tập tìm tập xác định của hàm số Toán 10

    Bài 1. Một sớm mai đầy sương thu và gió lạnh, ông Phương đi taxi đến nhà một người bạn chơi, quãng đường đi là 6 km, giá tiền được tính phụ thuộc vào độ dài đường đi như sau:

    • Từ 1 km đến 10 km giá 10.000 đ/km.
    • Bắt đầu từ km thứ 10 trở đi có giá 8.000 đ/km.

    Hỏi ông phải trả bao nhiêu tiền taxi. Đến buổi chiều, ông và người bạn này đi câu cá ở cách đó 23 km nữa. Hỏi hai người phải trả số tiền là bao nhiêu?

    Bài 2. Cho hàm số $$y=f(x)=\begin{cases} \frac{2x-3}{x-1} &\text{ với } x\leqslant 0\\ -x^2+3x &\text{ với } x>0. \end{cases}$$ Tìm tập xác định của hàm số và tính giá trị của hàm số đó tại $x=5,x=-2,x=0,x=2$.

    Bài 3. Cho hàm số $$y=g(x)=\begin{cases} \sqrt{-3x+8} &\text{ với } x<2 \\ \sqrt{x+7} &\text{ với } x\geqslant 2. \end{cases}$$ Tìm tập xác định của hàm số và tính giá trị của hàm số đó tại $x=-3,x=2,x=1,x=9$.

    Bài 4. Tìm tập xác định của hàm số sau:

    1. $y=\frac{2x-3}{4x^2+5x-9}$
    2. $y=\frac{2x+3}{x-3}+\sqrt{3x-7}$
    3. $y=-x^3+3x-2$
    4. $y=\frac{3+x}{x^2+2x-5}$
    5. $y=\sqrt{4x+2}+\sqrt{-2x+1}$
    6. $y=\frac{\sqrt{x+4}}{x^2+8x-20}$
    7. $y=\frac{2x+3}{(2x-1)(x+3)}$
    8. $y=\frac{x-2}{\sqrt{3x-6}}$
    9. $y=\frac{1}{x^2-4}+\sqrt{x+2} $

    Bài 5. Tìm tập xác định của hàm số:

    1. $y=\sqrt{\frac{x+1}{x-2}}$
    2. $y=\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{x}-1}$
    3. $y=\sqrt{x-\sqrt{x+1}-1}$
    4. $y=\frac{1}{{{x}^{2}}+x-\sqrt{{{x}^{2}}+x}-6}$
    5. $ y=\frac{\sqrt{x+1}}{x}+\frac{x}{\sqrt{2-x}} $
    6. $ y=\frac{1}{x-1}+\sqrt{-x^2+5x} $

    Bài 6. Tìm $ a $ để hàm số $ y=\frac{1}{\sqrt{x+a-2}+\sqrt{a+1-x}} $ xác định trên đoạn $ [-1,1]. $

    Bài 7. Tìm $a$ để hàm số

    1. $y=\frac{2x+1}{{{x}^{2}}-6x+a-2}$ xác định trên $\mathbb{R}$.
    2. $y=\frac{3x+1}{{{x}^{2}}-2ax+4}$xác định trên $\mathbb{R}$.
    3. $y=\sqrt{x-a}+\sqrt{2x-a-1}$ xác định trên $(0;+\infty)$.
    4. $y=\sqrt{2x-3a+4}+\frac{x-a}{x+a-1}$ xác định trên $(0;+\infty)$.
    5. $y=\frac{x+2a}{x-a+1}$ xác định trên $(-1;0)$.
    6. $y=\frac{1}{\sqrt{x-a}}+\sqrt{-x+2a+6}$ xác định trên $(-1;0)$.
    7. $y=\sqrt{2x+a+1}+\frac{1}{x-a}$ xác định trên $(1;+\infty)$.

    Đáp số.

    1. $a > 11$. 2. $–2 < a < 2$. 3. $a \le 1$. 4. $1\le a\le \frac{4}{3}$. 5. $a \le  0$ hoặc $a \ge  1$. 6. $–3 \le  a \le  –1$. 7. $–1 \le  a \le  1$

    Bài 8. Tìm $ m $ để hàm số $ y=\sqrt{x-m}+\sqrt{2x-m-1} $ xác định với mọi $ x>0. $

    Hướng dẫn. Hàm số xác định khi $ \begin{cases} x-m\geqslant 0 \\2x-m+1\geqslant 0 \end{cases} \Leftrightarrow \begin{cases} x\geqslant m\\ x\geqslant \frac{m-1}{2} \end{cases} $

    Do đó, hàm số xác định với mọi $ x>0 \Leftrightarrow \begin{cases} m\leqslant 0\\ \frac{m-1}{2}\leqslant 0 \end{cases} \Leftrightarrow m \leqslant 0 $.

    Đáp số. $ m\leqslant 0 $

    Bài 9. Tìm $ m $ để

    1. Tập xác định của hàm số $y=\sqrt{x+2m-1}+\sqrt{4-x}$ là $\left[ 1;4 \right]$.
    2. Hàm số $y=\sqrt{x-m}+\sqrt{x-3m+1}$ xác định trên $\left( 2;+\infty \right)$.
    3. Hàm số $y=\sqrt{\frac{x-1}{2x-m}}$ xác định trên $\left( -\infty ;1 \right)$.
  • Toán 10 – Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    Toán 10 – Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    Sử dụng sự tương giao của đường tròn và đường thẳng trong mặt phẳng tọa độ Oxy, chúng ta có thể dễ dàng Biện luận hệ phương trình, hệ bất phương trình có chứa tham số.

    Xem thêm:

    1. Lý thuyết biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    Nhắc lại rằng, đối với hệ phương trình hai ẩn, hệ bất phương trình hai ẩn $ x,y$ thì mỗi nghiệm của nó là một cặp số $ (x;y)$ thỏa mãn hệ đã cho. Mỗi cặp số $ (x;y)$ này chính là tọa độ của một điểm ở trong mặt phẳng tọa độ $ Oxy$.
    Để biện luận hệ phương trình, hệ bất phương trình đã cho, chúng ta biểu diễn các phương trình, bất phương trình của hệ bởi những đường thẳng, đường tròn hoặc miền mặt phẳng giới hạn bởi các đường thẳng, đường tròn trong mặt phẳng. Khi đó, số nghiệm của hệ phương trình, của hệ bất phương trình chính bằng số điểm chung của các đường thẳng và đường tròn này.

    • Trong mặt phẳng $ Oxy$, phương trình đường thẳng có dạng tổng quát $$ ax+by+c=0 $$
    • Phương trình đường tròn tâm $ I(a,b)$ bán kính $ R$ là $$ (x-a)^2+(y-b)^2=R^2 $$
    • Khoảng cách từ điểm $ M(x_0;y_0)$ tới đường thẳng $ \Delta:ax+by+c=0$ là
      $$ d(M,\Delta)=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} $$
    • Vị trí tương đối của đường thẳng $ \Delta$ và đường tròn tâm $ I$, bán kính $ R$:
      • có một điểm chung khi và chỉ khi $ d(I,\Delta)=R$
      • có hai điểm chung khi và chỉ khi $ d(I,\Delta)<R$
      • có không điểm chung khi và chỉ khi $ d(I,\Delta)>R$

    2. Các ví dụ Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    Bài 1: Tìm $ a$ để hệ sau có nghiệm duy nhất: $$\left\{ \begin{array}{lr}
    {x^2} + {y^2} – 2x \le 2&(1)\\
    x – y + a = 0&(2)
    \end{array} \right.$$
    Lời giải: Ta có bất phương trình (1) tương đương với $$ {(x – 1)^2} + {y^2} \le 3$$ Bất phương trình này biểu diễn hình tròn $ (C)$ có tâm $ I(1;0)$ bán kính $R=\sqrt 3 $ trên mặt phẳng tọa độ $ Oxy$. Phương trình (2) biểu diễn đường thẳng $ \Delta:x-y+a=0$. Để hệ có nghiệm duy nhất thì đường thẳng phải tiếp xúc với đường tròn. Điều này xảy ra khi và chỉ khi
    \begin{align*}
    d\left( {I,\Delta } \right) &= R\\
    \Leftrightarrow \frac{{\left| {1 – 0 – a} \right|}}{{\sqrt 2 }}& = \sqrt 3
    \end{align*}
    Giải hệ này, tìm được đáp số $ a = – 1 – \sqrt 6 ;a = – 1 + \sqrt 6 $.

    Bài 2: Tìm $ a$ để hệ sau có nghiệm duy nhất: $$\left\{ \begin{array}{l}
    x + y + \sqrt {2xy + m} \ge m\\
    x + y \le 1
    \end{array} \right.$$

    Lời giải: Hệ bất phương trình đã cho tương đương với
    \begin{align*}
    &\left\{ \begin{array}{l}
    \sqrt {2xy + m} \ge 1 – \left( {x + y} \right)\\
    x + y \le 1
    \end{array} \right.\\
    \Leftrightarrow &\left\{ \begin{array}{l}
    2xy + m \ge {\left( {1 – \left( {x + y} \right)} \right)^2}\\
    x + y \le 1
    \end{array} \right.\\
    \Leftrightarrow &\left\{ \begin{array}{lr}
    {\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} \le m + 1&\left( 3 \right)\\
    x + y \le 1&\left( 4 \right)
    \end{array} \right.
    \end{align*}

    • Với $m+1 \le 0$ hay $m \le -1$ thì hệ vô nghiệm.
    • Với $ m+1 > 0$ hay $ m>-1$, thì bất phương trình (3) biểu diễn hình tròn $ (C)$ có tâm $ I(1;1)$ và bán kính $R=\sqrt {m + 1} $ trong mặt phẳng tọa độ Oxy. Bất phương trình (4) biểu diễn nửa mặt phẳng bờ là đường thẳng $ x+y=1$. Hệ có nghiệm duy nhất khi và chỉ khi đường thẳng $ x+y=1$ tiếp xúc với đường tròn $ (C)$. Điều kiện cần và đủ là
      $$d(I,\Delta)=R \Leftrightarrow \frac{1}{{\sqrt 2 }} = \sqrt {m + 1} \Leftrightarrow m = – \frac{1}{2}$$

    Bài 3: Tìm $ a$ để hệ sau có nghiệm: $$\left\{ \begin{array}{l}
    4x – 3y + 2 \ge 0\\
    {x^2} + {y^2} = a
    \end{array} \right.$$
    Lời giải:

    • Nếu $ a\le 0$ hệ vô nghiệm.
    • Nếu $ a> 0$ thì số nghiệm của hệ (nếu có) là số giao điểm của nửa mặt phẳng biểu diễn bởi bất phương trình $4x-3y+2 \le 0$ và đường tròn tâm $ O(0;0)$ bán kính $R=\sqrt a $. Do đó, hệ có nghiệm khi và chỉ khi $$\sqrt a \ge OH \Leftrightarrow a \ge \frac{4}{{25}},$$ trong đó, $ H$ là chân đường vuông góc hạ từ $ O$ xuống đường thẳng $ 4x-3y+2= 0$.

    Bài 4: Cho hệ bất phương trình $$\left\{ \begin{array}{lr}
    {\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} \le 2&(5)\\
    x – y + m = 0&(6)
    \end{array} \right.$$
    Xác định $ m$ để hệ nghiệm đúng với mọi $x \in \left[ {0;2} \right]$.

    Lời giải: Tập hợp các điểm $ (x;y)$ thỏa mãn (5) là các điểm nằm trong và trên đường tròn $${\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} = 2$$
    Đường tròn này có tâm $ I(1;1)$ và bán kính $R = \sqrt 2 $. Tập hợp các điểm $ (x;y)$ thỏa mãn (6) là các điểm nằm trên đường thẳng $\Delta $ có phương trình $x-y+m=0.$
    Gỉa sử điểm $A \in \Delta $ sao cho ${x_A} = 0$ thì tọa độ của $ A$ là $ (0;m)$; $B \in \Delta $ sao cho ${x_B} = 2$ thì $ B(2;2+m)$.

    Hệ có nghiệm với mọi $x \in \left[ {0;2} \right]$ khi và chỉ khi đoạn thẳng $ AB$ nằm trong đường tròn $ (I;R)$. Lúc đó
    $$\left\{ \begin{array}{l} IA \le R\\ IB \le R
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    {\left( {0 – 1} \right)^2} + {\left( {m – 1} \right)^2} \le 2\\
    {\left( {2 – 1} \right)^2} + {\left( {2 + m – 1} \right)^2} \le 2
    \end{array} \right. $$
    Giải hệ này tìm được $ m = 0$

    Bài 5: Cho hệ phương trình $$\left\{ \begin{array}{lr}
    {x^2} + {y^2} – x = 0&(7)\\
    x + ay – a = 0&(8)
    \end{array} \right.$$
    Tìm $ a$ để hệ có hai nghiệm phân biệt.

    Lời giải: Phương trình (7) tương đương với $$ {\left( {x – \frac{1}{2}} \right)^2} + {y^2} = \frac{1}{4}$$
    Đây là một đường tròn tâm $I\left( {\frac{1}{2};0} \right)$ bán kính $R=\frac{1}{2}$. Tập nghiệm của phương trình (8) là tọa độ những điểm nằm trên đường thẳng $ x+ay-a=0$. Họ đường thẳng này luôn di qua điểm $ A(0;1)$ cố định.
    Nhận xét điểm $ A$ nằm ngoài đường tròn $ (I;R)$, nên từ $ A$ kẻ được hai tiếp tuyến với đường tròn $ (I;R)$.

    Phương trình tiếp tuyến đó là: $ x=0$ và $x + \frac{4}{3}y – \frac{4}{3} = 0$.

    Để hệ có hai nghiệm phân biệt thì đường thẳng $ x+ay-a=0$ phải cắt đường tròn (I;R) tại hai điểm phân biệt. Vậy đường thẳng $ x+ay-a=0$ phải nằm giữa hai tiếp tuyến trên. Điều này xảy ra khi và chỉ khi $0 <a < \frac{4}{3}$.

    Bài 6: Tìm $ m$ để phương trình sau có nghiệm: $$\sqrt {1 – {x^2}} = m – x$$
    Lời giải: Đặt $y = \sqrt {1 – {x^2}} $, điều kiện$y \ge 0$ thì phương tương đương với hệ bất phương trình
    $$\left\{ \begin{array}{lr}
    {x^2} + {y^2} = 1&(2)\\
    x + y – m = 0&(3)
    \end{array} \right.$$
    Gọi hai đường thẳng song song với đường thẳng $ d:x+y-m=0$ và tiếp xúc với đường tròn $ {x^2} + {y^2} = 1$ là $d_1, d_2$. Chúng ta viết được phương trình của chúng là $$ x+y-1=0,\, x+y+\sqrt{2}=0 $$

    Để phương trình đã cho có nghiệm thì đường thẳng $ d$ phải nằm giữa hai đường thẳng $ d_1$ và $ d_2$. Điều kiện cần và đủ là
    $ – 1 \le m \le \sqrt 2 $.

    Bài 7: Tìm GTLN của hàm số: $$y = x + \sqrt {a – {x^2}} (a > 0)$$

    Lời giải: Đặt $t = \sqrt {{a^2} – {x^2}} \Leftrightarrow {x^2} + {t^2} = {a^2}$ và $ x+t-y=0$. Chúng ta cần tìm điều kiện để hệ sau có nghiệm
    $$\left\{ \begin{array}{lr}
    {x^2} + {t^2} = {a^2}&(1)\\
    x + t – y = 0&(2)
    \end{array} \right.$$

    Bài 8: Hãy biện luận số nghiệm của hệ sau theo $ m$. $$\left\{ \begin{array}{lr}
    x + y = 4(1)&\\
    {x^2} + {y^2} = {m^2}&(2)
    \end{array} \right.$$

    Lời giải.

    • Nếu $ m=0$ thì hệ vô nghiệm.
    • Nếu $m \ne 0$ thì số nghiệm của hệ chính bằng số giao điểm của đường tròn ${x^2} + {y^2} = {m^2}$ và đường thẳng $\Delta 😡 + y = 4$
      Điều kiện cần và đủ là $$ d(O,\Delta)= \frac{{\left| { – 4} \right|}}{{\sqrt 2 }} = 2\sqrt 2 $$

    Vậy ta có:

    • Nếu $\left| m \right| < 2\sqrt 2 $ hệ vô nghiệm.
    • Nếu $m = \pm 2\sqrt 2 $ thì hệ có nghiệm duy nhất: $\left\{ \begin{array}{l}
      x = 2\\ y = 2 \end{array} \right.$
    • Nếu $\left| m \right| > 2\sqrt 2 $ thì hệ có hai nghiệm phân biệt.

    Bài 9: Tìm $ a$ để bất phương trình sau có nghiệm $$\sqrt {a – x} + \sqrt {x + a} > a(a > 0)$$
    Lời giải: Đặt $\left\{ \begin{array}{l}
    u = \sqrt {a + x} \\
    v = \sqrt {a – x}
    \end{array} \right.$ với điều kiện $u,v \ge 0$. Bất phương trình đã cho tương đương với hệ:
    $$\left\{ \begin{array}{lr}
    u + v > a&(1)\\
    {u^2} + {v^2} = 2a&(2)
    \end{array} \right.$$
    Làm tương tự các bài toán trước, đáp số là $ 0 < a < 4$.

  • Toán 10 – Tập hợp và các phép toán tập hợp

    Toán 10 – Tập hợp và các phép toán tập hợp

    Tập hợp và các phép toán tập hợp

    Bài này giới thiệt Lý thuyết tập hợp (tập hợp là gì, tập hợp con là gì) và các phép toán tập hợp (các phép toán hợp của hai tập hợp, giao của hai tập hợp, hiệu của hai tập hợp. Bài tập các em có thể tham khảo trong bài viết Bài tập Tập hợp Toán 10

    1. Khái niệm tập hợp

    Tập hợp là khái niệm cơ bản của toán học, không định nghĩa. Ta hiểu rằng, một tập hợp là một nhóm, một sự tụ tập các phần tử (đối tượng) có chung tính chất nào đó, như tập hợp các số tự nhiên, tập hợp các số thực, tập hợp các học sinh trong một lớp, tập các hình tứ giác, tập hợp các chữ cái trong bảng chữ cái tiếng Anh… Tập hợp thường kí hiệu bằng chữ cái in hoa. Ví dụ, tập hợp các số tự nhiên kí hiệu là $ \mathbb{N}, $ tập hợp các số thực kí hiệu là $ \mathbb{R}… $

    Mỗi một tập hợp thì gồm có các phần tử, ví dụ tập hợp các số tự nhiên $ \mathbb{N} $ thì gồm có các phần tử: $ 1,2,3,4,… $ Ta thấy số 1 nằm trong tập $ \mathbb{N}, $ khi đó ta nói, “1 là một phần tử của tập $ \mathbb{N} $” hoặc “1 thuộc tập $ \mathbb{N} $” và viết là $ 1\in \mathbb{N}; $ nhưng số $ -2 $ không nằm trong $ \mathbb{N}, $ nên ta nói “$ -2 $ không thuộc $ \mathbb{N} $” hoặc “$ -2 $ không là phần tử của $ \mathbb{N} $” và viết là $ -2\notin \mathbb{N}. $

    Tổng quát, để nói $ a $ là phần tử của tập hợp $ X $ ta viết $ a\in X$, $a $ không là phần tử của tập hợp $ X $ ta viết $ a\notin X.$

    Các xác định một tập hợp, cách cho tập hợp

    Tập hợp được hoàn toàn xác định bởi các phần tử của nó, mỗi phần tử chỉ được kể tên một lần, thứ tự các phần tử là không quan trọng, ví dụ $ \{1,2,3\} $ và $ \{3,1,2\} $ là cùng một tập hợp. Một tập hợp được hoàn toàn xác định nếu ta liệt kê được tất cả các phần tử của nó, hoặc mô tả được các phần tử của nó có đặc điểm, tính chất gì.

    • Liệt kê các phần tử của tập hợp. Nếu ta biết rõ các phần tử của một tập hợp thì ta có thể liệt kê chúng, đặt trong cặp ngoặc nhọn. Chẳng hạn, tập hợp $ S $ các nghiệm của phương trình $ x^2-3x+2=0 $ là $ S=\{1;2\} $, tập hợp $ P $ gồm các ước dương của 12 là $ P=\{1;2;3;4;6;12\} $. Khi các phần tử của một tập hợp quá nhiều, ta không thể viết hết ra được thì có thể dùng dấu ba chấm, chẳng hạn, tập hợp $ A $ các số tự nhiên lẻ bé hơn 1000 là $ A=\{1;3;5;…;997;999\} $.
    • Mô tả tính chất đặc trưng của tập hợp. Đôi khi, ta có thể viết một tập hợp bằng cách chỉ ra tính chất đặc trưng của nó, chẳng hạn tập hợp $ S $ các nghiệm của phương trình $ x^2-3x+2=0 $ có thể viết $ S=\{x\in \mathbb{R}\mid x^2-3x+2=0 $, tập hợp $ A $ các số tự nhiên lẻ bé hơn $1000$ là $ A=\{n\in \mathbb{N} \mid n=2k+1,k\in \mathbb{N},0\leqslant k\leqslant 448\}. $ Kí hiệu là “$ \mid $” đọc là “sao cho”, đôi khi còn được kí hiệu bằng dấu hai chấm.

    Chú ý:

    • Khi liệt kê các phần tử của tập hợp, chúng ta không cần quan tâm đến thứ tự của chúng. Tập $A$ gồm ba phần tử $1,2,3$ có thể viết là $A=\{1,2,3\}$ hoặc $A=\{1,3,2\}$ đều được.\
    • Mỗi một phần tử của tập hợp chỉ được liệt kê một lần.

    Ví dụ 1. Hãy xác định các tập hợp sau bằng cách liệt kê tất cả các phần tử của nó:

    • $ A= \left\{x\in \mathbb{Z}, -3<x<2 \right\} $
    • $ B= \left\{x\in \mathbb{Q}, x^3-3x=0 \right\} $
    • $ C= \left\{x\in \mathbb{Z}, 4x^2-8x+3=0 \right\} $

    Ví dụ 2. Hãy xác định các tập hợp sau bằng cách chỉ ra tính chất đặc trưng của nó:

    • $ A= \left\{2,3,5,7,11,13\right\} $
    • $ B= \left\{0,5,10,15,20 \right\} $
    • $ C= \left\{-\sqrt{5},-2,-\sqrt{3},-\sqrt{2},-1,0,1,\sqrt{2},\sqrt{3},2,\sqrt{5} \right\} $
    • $ D= \left\{X,U,A,N,T,R,O,G,B \right\} $

    Tập con của một tập hợp

    Trong các tập hợp, có một tập hợp đặc biệt, nó không chứa phần tử nào cả, được gọi là tập rỗng, kí hiệu $ \varnothing. $ Chẳng hạn, tập hợp các nghiệm thực của phương trình $ x^2+1=0 $ là tập rỗng.

    Tập $ A $ là tập con của $ B $, kí hiệu là $ A\subset B$ hoặc $ B\supset A $, khi và chỉ khi mọi phần tử của $ A $ đều là phần tử của $ B. $ \[ A\subset B \Leftrightarrow x\in B,\, \forall x\in A.\] Hiển nhiên, một tập hợp bất kì luôn là tập con của chính nó. Quy ước tập rỗng là tập con của mọi tập hợp.

    Ví dụ 3. Cho tập $ E=\left\{x\in \mathbb{Z}\mid \frac{3x+8}{x+1}\in \mathbb{Z} \right\} $

    • Tìm tất cả các phần tử của $ E. $
    • Tìm tất cả các tập con của $ E $ có ba phần tử.
    • Tìm các tập con của $ E $ có chứa phần tử $ 0$, và không chứa các ước số của $ 12$.

    Ta cũng có tính chất, nếu $ A\subset B $ và $ B\subset C $ thì suy ra $ A\subset C. $
    Cho hai tập hợp $ A $ và $ B $. Nếu mỗi phần tử thuộc $ A $ đều thuộc $ B $ và ngược lại mỗi phần tử thuộc $ B $ đều thuộc $ A $ thì ta nói hai tập hợp $ A $ và $ B $ bằng nhau và kí hiệu $ A= B $.
    \[ A=B \Leftrightarrow A \subset B \text{ và } B \subset A. \]
    Để biểu diễn một tập hợp, ta có thể dùng biểu đồ Venn, là một đường khép kín. Ví dụ, hình vẽ sau mô tả tập $ A $ là tập con của tập $ B $.

    bieu do venn tap hop A la tap con cua B

    2. Các phép toán trên tập hợp

    Cho hai tập hợp $ A $ và $ B $, chúng ta có các phép toán sau:

    • Hợp hai tập hợp: $ A\cup B= \left\{x\mid x\in A \text{ hoặc } x\in B \right\} $.
    • Giao hai tập hợp: $ A\cap B= \left\{x\mid x\in A \text{ và } x\in B \right\} $.
    • Hiệu hai tập hợp: $ A\setminus B= \left\{x\mid x\in A \text{ và } x\notin B \right\}. $
    • Nếu $ A\subset E $ thì $ C_EA=E\setminus A= \left\{x\mid x\in E \text{ và } x\notin A \right\}$ được gọi là phần bù của $ A $ trong $ E. $

    Hiểu một cách đơn giản, giao của hai tập hợp là lấy phần chung nhau của hai tập đó. Hợp của hai tập hợp là lấy tất cả các phần tử của cả hai tập.

    Ví dụ 4. Cho hai tập hợp $ A=\left\{ 1;2;3;4;5;6;7\right\} $ và $ B=\left\{1;3;5;7;9;11\right\} $. Hãy xác định các tập hợp
    $$ A\cup B,\quad B\cup A,\quad A\cap B,\quad B\cap A,\quad A\setminus B,\quad B\setminus A. $$

    Ví dụ 5. Cho ba tập hợp $ A=\left\{a, b,c,d,e,f,g \right\}, B=\left\{a,d,e,h,i,j\right\} $ và $ C=\left\{e,m,y,u,a,n,h\right\} $. Hãy xác định các tập hợp \[ A\cup B\cup C,\quad A\cap B\cap C \]

    Ví dụ 6. Cho tập $ A=\left\{1,2,3,4,5,6 \right\}$, $B=\left\{x\in \mathbb{Z}\mid -3\leqslant x\leqslant 2 \right\}$, $C=\left\{x\in \mathbb{R}\mid 2x^2-3x=0 \right\}. $

    • Liệt kê các phần tử của tập hợp $ B,C. $
    • Xác định các tập hợp $ A\cap B, B\cap C,C\cap A.$
    • Xác định các tập hợp $ A\cup B, B\cup C,C\cup A, A\cup B\cup C. $
    • Xác định các tập hợp $ A\setminus B, B\setminus C, A \setminus C.$

    Ví dụ 7. Các học sinh của một lớp gồm 40 học sinh tham gia thi đấu các môn thể thao. Có 21 học sinh thi đấu môn bóng chuyền, 17 học sinh thi bóng chuyền. Trong đó có 5 học sinh thi đấu cả hai môn bóng đá và bóng chuyền. Các em còn lại thi cầu lông. Hỏi có bao nhiêu em thi cầu lông?

    Hướng dẫn. Số học sinh chỉ thi đấu bóng đá là $ 21-5=16 $ em. Số học sinh chỉ thi đấu bóng chuyền là $ 17-5= 12$ em. Vậy số học sinh thi cầu lông là $ 40-16-12-5=7 $ em.

    Có thể sử dụng biểu đồ Venn để làm.

  • Toán 10 – Mệnh đề toán học

    Toán 10 – Mệnh đề toán học

    Toán 10 – Mệnh đề toán học

    Bài này giới thiệu Lý thuyết và các ví dụ về Mệnh đề toán học trong chương trình Toán 10. Phần bài tập, mời các em tham khảo tại bài viết Bài tập Mệnh đề toán học.

    1. Khái niệm mệnh đề

    Trong thực tế cuộc sống, ta thường gặp các phát biểu [khẳng định] về một sự kiện, hiện tượng, tính chất nào đó, mà tính đúng — sai rất rõ ràng, chẳng hạn: “Tam giác đều có ba cạnh bằng nhau”, “Hà Nội là thủ đô của Việt Nam”, “Số $ \pi $ là số vô tỉ”…

    Những khẳng định này có một đặc điểm chung, đó là tính đúng — sai hoàn toàn xác định, chúng ta có thể biết được khẳng định đó hoặc là đúng, hoặc là sai, mà không phụ thuộc vào ý kiến chủ quan của người phát biểu. Người ta gọi đó là những mệnh đề toán học hoặc mệnh đề logic hay gọi tắt là mệnh đề, và định nghĩa như sau:

    Mệnh đề là một câu khẳng định [phát biểu] đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.

    Mệnh đề thường được kí hiệu bằng các chữ cái in hoa, chẳng hạn

    $ P $: “Hà Nội là thủ đô của Việt Nam”.

    Một khẳng định đúng được gọi là một mệnh đề đúng, một khẳng định sai được gọi là một mệnh đề sai. Ví dụ, “Số $ \pi $ là số vô tỉ” là một mệnh đề đúng, còn “Phương trình $ x^2+1=0 $ có nghiệm” là một mệnh đề sai.

    Các câu mệnh lệnh, câu hỏi không có tính đúng sai, còn câu cảm thán thì tính đúng sai còn phụ thuộc vào ý kiến chủ quan của từng cá nhân, nên chúng không là các mệnh đề. Chẳng hạn, phát biểu “Trời mưa ở Nam Định vào ngày 01/4/2021” là một mệnh đề, trong khi “Có phải hôm nay trời mưa?” hoặc “Trời mưa to quá!” không phải là mệnh đề.

    Ngoài ra còn có các khẳng định mà không thể xác định được tính đúng sai, mời bạn xem tại bài Một số phát biểu không phải mệnh đề.

    Ví dụ 1. Các khẳng định sau có là mệnh đề không? Nếu có, thì cho biết đó là mệnh đề đúng hay sai.

    • $ A: $ “12 là số nguyên tố.”
    • $ B: $ “$ \pi $ không là số hữu tỉ.”
    • $ C: $ “Cấm hút thuốc lá!”
    • $ D: $ “Bài tập này khó quá!”
    • $ E: $ “Nếu hai tam giác có diện tích bằng nhau thì hai tam giác ấy bằng nhau.”
    • $ F: $ “Một tam giác đều khi và chỉ khi tam giác đó cân và có một góc bằng $ 60^\circ$.”
    • $ G: $ “Tổng các góc trong một tam giác bằng $ 360^\circ. $”

    2. Mệnh đề phủ định

    Khi làm việc với các mệnh đề, chúng ta rất hay gặp các cặp mệnh đề mà tính đúng — sai của chúng trái ngược nhau, chẳng hạn, xét mệnh đề $ P: $ “Hình thoi có bốn cạnh bằng nhau.” thì phát biểu “Hình thoi không có bốn cạnh bằng nhau.” hoặc “Không phải hình thoi có bốn cạnh bằng nhau”. Chúng được gọi là mệnh đề phủ định của mệnh đề $ P $, vì mệnh đề $ P $ đúng nên mệnh đề phủ định của nó sai.

    Mệnh đề “Không phải $ P $” là mệnh đề phủ định của mệnh đề $ P, $ kí hiệu $ \overline{P}. $ Nếu $ P $ đúng thì $ \overline{P} $ sai và ngược lại.

    Để tạo ra mệnh đề phủ định từ một mệnh đề cho trước, chúng ta chỉ việc thêm vào trước mệnh đề đã cho cụm từ “không phải”, hoặc ta tìm những từ ngữ trái nghĩa để phát biểu. Để hiểu rõ hơn, ta xét ví dụ sau đây.

    Ví dụ 2. Xét tính đúng sai của các mệnh đề sau và lập mệnh đề phủ định mệnh:

    • $ P: $ “Hình vuông có hai đường chéo bằng nhau.”
    • $ Q: $ “Phương trình $ x^4+1=0 $ vô nghiệm.”
    • $ R: $ “$\sqrt{2}>\frac{3}{2}$.”
    • $ S: $ “$(\sqrt{2}-\sqrt{18})^2>8$.”
    • $ T: $ “Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.”
    • $ U: $ “Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song với nhau.”

    Xem thêm Cách lập mệnh đề phủ định

    3. Mệnh đề kéo theo, mệnh đề tương đương

    Khi chứng minh một bài toán, hầu hết các mệnh đề chúng ta sử dụng có dạng “Nếu — thì”, chúng được gọi là các mệnh đề kéo theo.

    Cho hai mệnh đề $P$ và $ Q $, mệnh đề “Nếu $ P $ thì $ Q $” được gọi là mệnh đề kéo theo và kí hiệu là “$ P\Rightarrow Q$”.

    Tính đúng — sai của mệnh đề kéo theo được xác định như sau, mệnh đề “$P\Rightarrow Q$” sai khi $ P $ đúng, $ Q $ sai và đúng trong các trường hợp còn lại. Chẳng hạn,

    • Nếu $ P $ là “25 là một số chính phương”, và $ Q $ là “25 là một hợp số”, thì mệnh đề $ P\Rightarrow
      Q $ là đúng vì cả $ P $ và $ Q $ đều đúng.
    • Nếu $ P $ là “25 là một số chính phương”, và $ Q $ là “25 là một số nguyên tố”, thì mệnh đề $ P\Rightarrow
      Q $ là sai vì $ P $ đúng còn $ Q $ đều sai.
    • Nếu $ P $ là “25 là một số nguyên tố”, và $ Q $ là “25 là một số chẵn”, thì mệnh đề $ P\Rightarrow
      Q $ là đúng vì cả $ P $ và $ Q $ đều sai. Hơn nữa, nếu mệnh đề $ P $ sai thì mệnh đề $ P\Rightarrow Q$ luôn luôn đúng.

    Chúng ta xét hai mệnh đề sau, $ P $: “Hai tam giác bằng nhau” và $ Q $: “Hai tam giác có diện tích bằng nhau”.

    Khi đó, mệnh đề “$ P \Rightarrow Q$” là: “Nếu hai tam giác bằng nhau thì hai tam giác có diện tích bằng nhau”.

    Ta thấy, nếu có $ P $, tức là nếu có điều kiện “hai tam giác bằng nhau” thì đủ để suy ra chúng có diện tích bằng nhau, tức là suy ra $ Q $; còn nếu có diện tích bằng nhau thì chưa đủ để suy ra chúng bằng nhau. Nói là chưa đủ tức là cần phải có thêm một số điều kiện nữa, chẳng hạn chúng phải đồng dạng, mới đủ để suy ra chúng bằng nhau. Nhưng nếu không có điều kiện diện tích bằng nhau thì không thể có chuyện chúng bằng nhau được, tức là có diện tích bằng nhau là điều kiện cần thiết nhưng chưa đủ để suy ra chúng bằng nhau.

    Trong trường hợp tổng quát, $ P $ gọi là giả thiết, $ Q $ gọi là kết luận, hoặc:

    • $ P $ là điều kiện đủ để có $ Q,$
    • $ Q$ là điều kiện cần để có $ P. $

    Để hiểu rõ hơn về điều kiện cần, điều kiện đủ mời các em xem trong bài Điều kiện cần và đủ là gì?

    Cho mệnh đề “$ P\Rightarrow Q$”. Mệnh đề “$ Q\Rightarrow P $” được gọi là mệnh đề đảo của mệnh đề “$ P\Rightarrow Q $”.

    Ví dụ 3. Phát biểu mệnh đề đảo của các định lí sau, xét xem chúng đúng hay sai.

    A: “Tứ giác có bốn cạnh bằng nhau thì là hình thoi.”
    B: “Hình vuông là tứ giác có bốn góc vuông”

    Cho hai mệnh đề $P$ và $ Q $. Mệnh đề “$ P $ nếu và chỉ nếu $ Q $” được gọi là mệnh đề tương đương và kí hiệu là “$ P\Leftrightarrow Q $”. Mệnh đề “$ P\Leftrightarrow Q $” đúng khi và chỉ khi cả hai mệnh đề $ P $ và $ Q $ đều đúng hoặc đều sai.

    Khi đó, chúng ta nói rằng “$ P $ là điều kiện cần và đủ để có $ Q$”.

    Ví dụ 4. Lập mệnh đề đảo của các định lí sau và cho biết các mệnh đề này đúng hay sai. Sử dụng mệnh đề tương đương, nếu được.

    • “Nếu tứ giác là hình vuông thì tứ giác có bốn cạnh bằng nhau”.
    • “Nếu hai tam giác bằng nhau thì hai tam giác ấy đồng dạng và có một cạnh bằng nhau”.
    • “Nếu hai số nguyên lẻ thì tích của chúng là số lẻ”.

    Hướng dẫn.

    • Mệnh đề đảo là mệnh đề: “Nếu tứ giác có bốn cạnh bằng nhau thì tứ giác là hình vuông”. Mệnh đề này sai vì hình thoi cũng có 4 cạnh bằng nhau nhưng không phải là hình vuông.
    • Mệnh đề đảo là mệnh đề: “Nếu hai tam giác đồng dạng và có một cạnh bằng nhau thì hai tam giác ấy bằng nhau”. Mệnh đề này sai vì hai tam giác $ ABC $ và $ A’B’C’ $ có các cạnh tương ứng là 3, 4,6 và 6, 8, 12 thì đồng dạng và có một cạnh bằng nhau là 6 nhưng không bằng nhau.
    • Mệnh đề đảo là mệnh đề: “Nếu tích của hai số nguyên là lẻ thì hai số nguyên là lẻ”. Mệnh đề này đúng, do đó có thể phát biểu: “Hai số nguyên là lẻ khi và chỉ khi tích của chúng là số lẻ”.

    Phương pháp chứng minh phản chứng

    Một phương pháp rất hiệu quả để chứng minh các mệnh đề dạng “$ A\Rightarrow B $” là phương pháp phản chứng. Cụ thể, để chứng minh mệnh đề “$ A\Rightarrow B $” là đúng ta chứng minh mệnh đề “$ \overline{B}\Rightarrow \overline{A} $” đúng.

    Ví dụ 5. Chứng minh nếu tích hai số nguyên $ a $ và $ b $ là lẻ thì $ a $ và $ b $ đều là số lẻ.

    Hướng dẫn. Giả sử ngược lại, không phải $ a $ và $ b $ đều lẻ, tức là $ a $ chẵn hoặc $ b $ chẵn. Khi đó $ ab $ chẵn, mâu thuẫn với giả thiết. Vậy nếu tích hai số nguyên $ a $ và $ b $ là lẻ thì $ a $ và $ b $ là lẻ.

    Ví dụ 6. Cho $ a,b,c $ là ba số thực bất kì, chứng minh có ít nhất một trong các bất đẳng thức sau là đúng:
    $$ a^2+b^2\geqslant 2bc ,\quad b^2+c^2\geqslant 2ca,\quad c^2+a^2\geqslant 2ab $$

    Hướng dẫn. Giả sử ngược lại, cả ba bất đẳng thức đều sai, tức là “$ a^2+b^2<2bc $”, “$ b^2+c^2<2ca $”, “$ c^2+a^2< 2ab $”. Cộng từng vế ba bất đẳng thức trên đươc \[ a^2+b^2+c^2<2bc+2ca+2ab. \] Suy ra $ (a-b)^2+(b-c)^2+(c-a)^2<0, $ điều này là vô lý. Vậy điều ta giả sử là sai, tức là có ít nhất một trong ba bất đẳng thức đã cho là đúng.

    Ví dụ 7. Trong mặt phẳng cho sáu điểm, trong đó không có ba điểm nào thẳng hàng. Mỗi đoạn thẳng nối từng cặp điểm được tô màu đỏ hoặc xanh. Chứng minh rằng tồn tại ba điểm trong số sáu điểm đã cho, sao cho chúng là ba đỉnh của một tam giác mà các cạnh của nó được tô cùng một màu.

    Hướng dẫn. Xét $ A $ là một trong số sáu điểm đã cho. Khi đó xét năm đoạn thẳng (mỗi đoạn thẳng nối điểm $ A $ với năm điểm còn lại). Vì mỗi đoạn thẳng chỉ được tô hoặc màu đỏ hoặc màu xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử là các đoạn $ AB_1, AB_2, AB_3 $ và có thể cho rằng chúng cùng màu xanh. Chỉ có hai khả năng sau xảy ra:

    • Nếu ít nhất một trong ba đoạn $ B_1B_2, B_2B_3, B_3B_1 $ màu xanh thì tồn tại một tam giác với ba cạnh xanh và kết luận của bài toán đúng trong trường hợp này.
    • Nếu không phải như vậy, tức là $ B_1B_2, B_2B_3, B_3B_1 $ màu đỏ, thì ba điểm phải tìm là $ B_1, B_2, B_3, $ vì $ B_1B_2B_3 $ là tam giác với ba cạnh đỏ.

    3. Mệnh đề chứa biến

    Xét phát biểu: $$ x+2>0 $$ đây không phải là một mệnh đề, vì chúng ta chưa biết được tính đúng — sai của nó, tuy nhiên khi ta cho $ x $ một giá trị cụ thể nào đó, thì ta được một mệnh đề, chẳng hạn khi ta cho $ x=-2 $ thì được một mệnh đề sai “$ -2+2>0$”, còn khi cho $ x=1 $ ta lại được một mệnh đề đúng “$ 1+2>0 $”.

    Những phát biểu có dạng như phát biểu trên được gọi là các mệnh đề chứa biến.

    Những phát biểu mà tính đúng — sai của chúng tùy thuộc vào giá trị của biến được gọi là những mệnh đề chứa biến. Mệnh đề chứa biến $ P(x) $ là một phát biểu chứa biến $ x, $ mà với mỗi giá trị của biến $ x $ thì ta được một mệnh đề.

    Ví dụ 8. Tìm $ x $ để các mệnh đề sau là đúng.

    • “$ x $ là số tự nhiên nhỏ hơn 15 và chia hết cho 3”
    • “$ 2x^2-5x+2=0 $”
    • “$ x $ là số dương thỏa mãn $ (x-2)^2>x^2+13 $”
    • “$ x $ không thỏa mãn phương trình $ (2x-5)(x+6)=0 $”

    Cho mệnh đề chứa biến $ P(x) $ với $ x\in \mathbb{D} $ thì phát biểu:

    • “Với mọi $ x\in \mathbb{D}, P(x) $ đúng” là một mệnh đề, kí hiệu là “$ \forall x\in \mathbb{D},P(x) $”. Mệnh đề này sai nếu có ít nhất một $ x_0\in \mathbb{D} $ sao cho $ P(x_0) $ sai.
    • “Tồn tại $ x\in \mathbb{D}, P(x) $ đúng” là một mệnh đề, kí hiệu là “$ \exists x\in \mathbb{D},P(x) $”. Mệnh đề này đúng nếu có ít nhất một $ x_0\in \mathbb{D} $ sao cho $ P(x_0) $ đúng.

    Để lập mệnh đề phủ định của hai mệnh đề trên, ta hãy xem xét một mệnh đề cụ thể sau

    “Mọi học sinh lớp 10A5 cao trên $ 1{,}6 $ m.”

    Mệnh đề này đúng hay sai? Mệnh đề phủ định của nó là gì? Mệnh đề phủ định là “Không phải mọi học sinh lớp 10A5 cao trên 1,6m”. Điều đó nghĩa là gì? Nghĩa là “Có ít nhất một học sinh lớp 10A5 không cao trên 1,6m”. Nói cách khác, tức là “Tồn tại học sinh lớp 10A5 không cao trên 1,6m”. Từ đó, ta có kết luận trong trường hợp tổng quát như sau:

    Mệnh đề phủ định của “$ \forall x\in \mathbb{D},P(x) $” là “$ \exists x\in \mathbb{D},\overline{P(x)}$”.
    Mệnh đề phủ định của “$ \exists x\in \mathbb{D},P(x) $” là “$ \forall x\in \mathbb{D},\overline{P(x)}. $”

    Mời thầy cô và các em học sinh tham khảo thêm trong bài Cách lập mệnh đề phủ định.

    Ví dụ 9. Các mệnh đề sau đúng hay sai và phủ định các mệnh đề ấy:

    • “$ \forall x, x^2+x+1>0 $”
    • “$ \forall x, x^2\geqslant x $”
    • “$ \forall x, x^2-3x+2=0 $”
    • “$ \exists x, x^3-4x^2+3x-3>0 $”
    • “$ \exists x,x^2+4x+5=0 $”
    • “$ \forall n\in \mathbb{N}, (2n+1)^2-1 $ chia hết cho 4”
  • Phương pháp đặt ẩn phụ phương trình vô tỉ

    Phương pháp đặt ẩn phụ phương trình vô tỉ

    Phương pháp đặt ẩn phụ phương trình vô tỉ Phương pháp đặt ẩn phụ giải PT, bất phương trình chứa căn

    Để giải phương trình chứa căn (phương trình vô tỉ) thì phương pháp đặt ẩn phụ là một trong những cách hiệu quả để đưa một phương trình chứa căn, bất phương trình chứa căn phức tạp về các dạng phương trình, bất phương trình chứa căn cơ bản.

    Các phương pháp giải PT, BPT chứa căn khác là:

    1. Các dạng toán giải phương trình, bất phương trình bằng đặt ẩn phụ

    Phương pháp đặt ẩn phụ (còn gọi là đổi biến) giải phương trình, bất phương trình vô tỉ gồm có 4 dạng:

    • Đưa về phương trình một ẩn.
    • Đưa về phương trình đẳng cấp (phương trình thuần nhất).
    • Đưa về phương trình tích (phương pháp đặt ẩn phụ không hoàn toàn).
    • Đưa về hệ phương trình.

    2. Phương pháp đặt ẩn phụ đưa về phương trình, bất phương trình một ẩn mới

    Ví dụ 1. Giải phương trình $$\sqrt{3{{x}^{2}}-2x+9}+\sqrt{3{{x}^{2}}-2x+2}=7$$ Hướng dẫn. Đặt $t=\sqrt{3{{x}^{2}}-2x+2}$, điều kiện $t \ge 0$ ta thu được phương trình \[\begin{array}{*{20}{l}}
    {}&{\sqrt {{t^2} + 7} + t = 7}\\
    \Leftrightarrow &{\left\{ \begin{array}{l}
    7 – t \ge 0\\
    {t^2} + 7 = {(7 – t)^2}
    \end{array} \right.}\\
    \Leftrightarrow &{\left\{ \begin{array}{l}
    t \le 7\\
    {t^2} + 7 = 49 – 14t + {t^2}
    \end{array} \right.}\\
    \Leftrightarrow &{t = 3}
    \end{array}\] Với $ t=3, $ ta có phương trình \[\sqrt {3{x^2} – 2x + 2} = 3\]Bình phương hai vế phương trình này, tìm được nghiệm $ x=\frac{{1 \pm\sqrt {22} }}{3}.$

    Ví dụ 2. Giải bất phương trình $$\left( x+1 \right)\left( x+4 \right)<5\sqrt{{{x}^{2}}+5x+28}$$ Hướng dẫn. Ta có, bất phương trình đã cho tương đương với \[ {{x}^{2}}+5x+4<5\sqrt{{{x}^{2}}+5x+28} \] Lúc này đã thấy xuất hiện một biểu thức phức tạp và xuất hiện nhiều lần. Do đó, ta sử dụng phương pháp đặt ẩn phụ với $t=\sqrt{{{x}^{2}}+5x+28}$ điều kiện $ t\ge0 $ thì thu được bất phương trình \[ {{t}^{2}}-5t+24<0 \] Giải bất phương trình này được $-3<t<8$. Kết hợp điều kiện được $0<t<8$, do đó có $$\sqrt {{x^2} + 5x + 28} < 8 $$ Giải bất phương trình này tìm được $ – 9 < x < 4. $

    Ví dụ 3. Giải phương trình $$\sqrt{x+2}+\sqrt{5-x}+\sqrt{(x+2)(5-x)}=4$$ Hướng dẫn. Điều kiện $-2\le x\le 5$. Đặt $t=\sqrt{x+2}+\sqrt{5-x}$ điều kiện $ t\ge0. $ Suy ra \[ {{t}^{2}}=7+2\sqrt{x+2}\sqrt{5-x}=7+2\sqrt{\left( x+2 \right)\left( 5-x \right)} \] Do đó $ \sqrt{\left( x+2 \right)\left( 5-x \right)}=\dfrac{{{t}^{2}}-7}{2} $ và ta thu được phương trình \[ t + \frac{{{t^2} – 7}}{2} = 4 \] Giải phương trình bậc hai này tìm được $ t=3 $. Suy ra, ta có phương trình \[{\sqrt {x + 2} + \sqrt {5 – x} = 3}\] Hai vế của phương trình này đều không âm nên bình phương hai vế ta được phương trình tương đương \[\begin{array}{*{20}{c}}
    {}&{7 + 2\sqrt {(x + 2)(5 – x)} = 9}\\
    \Leftrightarrow &{\sqrt {(x + 2)(5 – x)} = 1}
    \end{array}\]Tiếp tục bình phương hai vế phương trình cuối cùng này ta tìm được đáp số $x={\frac{{3 \pm3\sqrt 5 }}{2}}$

    Ví dụ 4. Giải phương trình $$\sqrt{x-\sqrt{{{x}^{2}}-1}}+\sqrt{x+\sqrt{{{x}^{2}}-1}}=2$$ Hướng dẫn. Điều kiện $x\ge 1$. Nhận xét: $\sqrt{x-\sqrt{{{x}^{2}}-1}}.\sqrt{x+\sqrt{{{x}^{2}}-1}}=1$ nên đặt $t=\sqrt{x-\sqrt{{{x}^{2}}-1}}$ thì phương trình đã cho trở thành $$t+\frac{1}{t}=2\Leftrightarrow t=1$$ Với $t=1$, chúng ta có phương trình $\sqrt{x-\sqrt{{{x}^{2}}-1}}=1$. Bình phương hai vế phương trình này ta tìm được đáp số cuối cùng $x=1$.

    Ví dụ 5. Giải phương trình: $$2{{x}^{2}}-6x-1=\sqrt{4x+5}$$ Hướng dẫn. Điều kiện: $x\ge -\frac{4}{5}$. Ta sử dụng phương pháp đặt ẩn phụ với $t=\sqrt{4x+5}$ điều kiện $ t\ge 0 $ thì $x=\frac{{{t}^{2}}-5}{4}$. Thay vào ta có phương trình: \begin{align*}
    & 2.\frac{{{t}^{4}}-10{{t}^{2}}+25}{16}-\frac{6}{4}({{t}^{2}}-5)-1=t\\
    \Leftrightarrow\;& {{t}^{4}}-22{{t}^{2}}-8t+27=0\\
    \Leftrightarrow\;& ({{t}^{2}}+2t-7)({{t}^{2}}-2t-11)=0
    \end{align*} Ta tìm được bốn nghiệm là: ${{t}_{1,2}}=-1\pm 2\sqrt{2}$, ${{t}_{3,4}}=1\pm 2\sqrt{3}$. Kết hợp điều kiện được ${{t}_{1}}=-1+2\sqrt{2},{{t}_{3}}=1+2\sqrt{3}$. Từ đó tìm được các nghiệm của phương trình đã cho là $x=1-\sqrt{2}$ và $x=2+\sqrt{3}$.

    Ví dụ 6. Giải phương trình $$x+\sqrt{5+\sqrt{x-1}}=6$$ Hướng dẫn. Điều kiện: $1\le x\le 6$. Đặt $y=\sqrt{x-1}$ điều kiện $y\ge 0$ thì phương trình trở thành: $${{y}^{2}}+\sqrt{y+5}=5\Leftrightarrow {{y}^{4}}-10{{y}^{2}}-y+20=0$$ Với $y\le \sqrt{5}$ thì phương trình tương đương với $$({{y}^{2}}+y-4)({{y}^{2}}-y-5)=0\Leftrightarrow y=\frac{1+\sqrt{21}}{2},y=\frac{-1+\sqrt{17}}{2}$$ Từ đó ta tìm được các giá trị của $x=\frac{11-\sqrt{17}}{2}$.

    Ví dụ 7. [THTT 3-2005] Giải phương trình $$x=\left( 2004+\sqrt{x} \right){{\left( 1-\sqrt{1-\sqrt{x}} \right)}^{2}}$$ Hướng dẫn. Điều kiện $0\le x\le 1$. Đặt $y=\sqrt{1-\sqrt{x}}$ thì phương trình trở thành $$2{{\left( 1-y \right)}^{2}}\left( {{y}^{2}}+y-1002 \right)=0\Leftrightarrow y=1$$ Từ đó tìm được nghiệm $ x=0. $

    Ví dụ 8. Giải phương trình sau: $${{x}^{2}}+2x\sqrt{x-\frac{1}{x}}=3x+1$$ Hướng dẫn. Điều kiện $-1\le x<0$. Chia cả hai vế cho $ x $ ta được phương trình $$x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}$$ Đặt $t=x-\frac{1}{x}$. Đáp số $ x=\frac{1\pm \sqrt{5} }{2}.$

    Ví dụ 9. Giải phương trình $${{x}^{2}}+\sqrt[3]{{{x}^{4}}-{{x}^{2}}}=2x+1$$ Hướng dẫn. Nhận xét $x=0$ không phải là nghiệm nên chia cả hai vế cho $ x $ ta được: $$\left( x-\frac{1}{x} \right)+\sqrt[3]{x-\frac{1}{x}}=2$$ Đặt $t=\sqrt[3]{x-\frac{1}{x}}$ thu được phương trình $${{t}^{3}}+t-2=0$$ Giải phương trình này, tìm được $t=1$. Từ đó tìm được đáp số $ x=\frac{1\pm \sqrt{5}}{2}$.

    Ví dụ 10. Giải bất phương trình \[ \frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1 \] Hướng dẫn. Biến đổi bất phương trình đã cho thành \begin{align*}
    &\frac{1}{1-x^2}-1>\frac{3x}{\sqrt{1-x^2}}-2 \\
    \Leftrightarrow\;& \frac{x^2}{1-x^2}>3\cdot\frac{x}{\sqrt{1-x^2}}-2
    \end{align*} Đặt $ t= \frac{x}{\sqrt{1-x^2}}$ đưa về bất phương trình bậc hai ẩn $ t$ là \[{{t^2} > 3t – 2}\]

    Ví dụ 11. Tìm $ m $ để phương trình sau có nghiệm: $$ x(x-1)+4(x-1)\sqrt{\frac{x}{x-1}}=m $$ Hướng dẫn. Đặt $t=(x-1)\sqrt{\frac{x}{x-1}}$ thì $t\in \mathbb{R}$. Phương trình đã cho có nghiệm khi và chỉ khi phương trình ${{t}^{2}}+4t-m=0$ có nghiệm. Điều kiện cần và đủ là \[ \Delta \ge 0 \Leftrightarrow m\ge -4 \] Vậy với $ m\ge -4 $ thì phương trình đã cho có nghiệm.

    Ví dụ 12. Tìm $ m $ để bất phương trình $$ m\left( \sqrt{{{x}^{2}}-2x+2}+1 \right)+x(2-x)\le 0 $$ có nghiệm $x\in \left[ 0;1+\sqrt{3} \right]$.

    Hướng dẫn. Đặt $t=\sqrt{{{x}^{2}}-2x+2}$ thì $x\in [0;1+\sqrt{3}] $ nên $ t\in[1;2]. $ Khi đó bất phương trình đã cho tương đương với $$ m\le \frac{{{t}^{2}}-2}{t+1}\,\,\,\,(*)$$ Xét hàm số $f(t)=\frac{{{t}^{2}}-2}{t+1}$ trên $ [1,2] $ có $$f'(t)=\frac{{{t}^{2}}+2t+2}{{{(t+1)}^{2}}}>0$$ nên hàm số $ f(t) $ đồng biến trên đoạn $ [1,2]$

    Do đó, bất phương trình đã cho có nghiệm $x\in \left[ 0;\,\,1+\sqrt{3} \right]$ khi và chỉ khi bất phương trình $(*)$ có nghiệm $t\in [1,2]$ khi và chỉ khi $$m\le\underset{t\in \left[ 1;2 \right]}{\mathop{\max f(t)}}=f(2)=\frac{2}{3}$$ Vậy các giá trị cần tìm là $m\le\frac{2}{3}.$

    3. Phương pháp đặt ẩn phụ đưa về phương trình thuần nhất

    Phương trình thuần nhất (đẳng cấp) bậc hai hai ẩn \( x,y \) là phương trình có dạng $$ ax^2+bxy+cy^2=0 $$ Cách giải. Chúng ta có hai cách để xử lý phương trình thuần nhất bậc hai này:

    • Nếu $y=0$ thì $x=0$. Nếu $y\ne0$ ta chia cả hai vế cho $y^{2}$ và đặt $t=\frac{x}{y}$ được phương trình bậc hai $$at^{2}+bt+c=0$$
    • Nếu phương trình $ax^{2}+bx+c=0$ có hai nghiệm $M,N$ thì ta phân tích ngay phương trình đã cho thành \[\begin{array}{l}
      \,\,\,\,\,\,\,a{x^2} + bxy + c{y^2} = 0\\
      \Leftrightarrow a(x – My)(x – Ny)
      \end{array}\] mà không cần phải đặt $t=\frac{x}{y}$.

    Ví dụ 1. [Vào 10 Trần Phú – Hải Phòng] Giải phương trình $$ 5\sqrt{x^3+1}=2(x^2+2)$$ Hướng dẫn. Điều kiện $ x^3+1\ge0 \Leftrightarrow x\ge -1. $ Ta có $ x^3=1=(x+1)(x^2-x+1) $ mà $ (x+1)+(x^2-x+1)=x^2+2 $ tức là giữa căn thức và biểu thức còn lại có sự liên quan nhất định. Ta khai thác như thế nào?

    Viết lại phương trình đã cho thành \begin{align*}
    & 5\sqrt{(x+1)(x^2-x+1)}=2((x+1)+(x^2-x+1))\\
    \Leftrightarrow \;&5\sqrt{(x+1)(x^2-x+1)}=2((\sqrt{x+1})^2+(\sqrt{x^2-x+1})^2)
    \end{align*} Đặt $ a=\sqrt{x+1} $ và $ b=\sqrt{x^2-x+1} $ thì ta được phương trình $$ 5ab=2a^2+2b^2 $$ Phân tích đa thức thành nhân tử được $$2(a-2b)(a-\frac{1}{2}b)=0$$ Từ đó tìm được $a=2b $ hoặc $a=\frac{1}{2}b. $ Đáp số $ x=\frac{5\pm\sqrt{37}}{2}. $

    Ví dụ 2. Giải phương trình $$ 2(x^2-3x+2)=3\sqrt{x^3+8} $$ Hướng dẫn. Đáp số $ x=3\pm\sqrt{13}. $

    Ví dụ 3. Giải phương trình: $$2\left( {{x}^{2}}+2 \right)=5\sqrt{{{x}^{3}}+1}$$ Hướng dẫn. Đặt $u=\sqrt{x+1},v=\sqrt{{{x}^{2}}-x+1}$ thì phương trình trở thành: $$2\left( {{u}^{2}}+{{v}^{2}} \right)=5uv\Leftrightarrow \left[ \begin{array}{l}
    u=2v \\
    u=\frac{1}{2}v
    \end{array} \right.$$
    Tìm được đáp số $x=\frac{5\pm \sqrt{37}}{2}$.

    Ví dụ 4. Giải phương trình $$ 5\sqrt{x^5+x^3+x^2+1}=2\sqrt{x^6+5x^4+8x^2+4} $$ Hướng dẫn. Khi giải phương trình này, việc đầu tiên là tôi thử bình phương! Được một phương trình bậc 6, thử nhóm các kiểu, loay hoay một lúc mà không được. Tôi quay lại phương trình ban đầu, quan sát biểu thức $ x^6+5x^4+8x^2+4 $ tôi thấy có mũ 6, mũ 4 và mũ 2, toàn là lũy thừa chẵn. Tôi thử tách và thành công \begin{align*}
    x^6+5x^4+8x^2+4&=(x^6+x^4)+4(x^4+2x^2+1)\\
    &=(x^2+1)(x^4+4x^2+4)
    \end{align*} Quan sát biểu thức dưới căn ở vế trái, dễ dàng nhóm thành $ (x^2+1)(x^3+1) $. Do đó, phương trình ban đầu trở thành \[ 5\sqrt{x^3+1}=2(x^2+2) \] đây là phương trình đẳng cấp bậc hai đối với $ u=x+1,v=x^2-x+1. $

    Ví dụ 5. Giải bất phương trình  $$2{x^3} \le (1 + 2x – 3{x^2})\sqrt {2x + 1}$$ Hướng dẫn. Đặt $y=\sqrt{2x+1}$ điều kiện $ y\ge 0 $ thì $ {{y}^{2}}=2x+1 $ và do đó, bất phương trình đã cho trở thành: $$
    2{{x}^{3}}\le \left( {{y}^{2}}-3{{x}^{2}} \right)y\Leftrightarrow 2{{x}^{3}}+3{{x}^{2}}y-{{y}^{3}}\le 0\,\,\,(*)
    $$ Ta xét hai trường hợp:

    • $ y=0 $ tìm được nghiệm $ x=-\frac{1}{2}. $
    • $ y>0 $, chia cả hai vế bất phương trình $ (*) $ cho $ y^3 $ được \[\begin{array}{*{20}{l}}
      {}&{2{{\left( {\frac{x}{y}} \right)}^3} + 3{{\left( {\frac{x}{y}} \right)}^2} – 1 \le 0}\\
      \Leftrightarrow &{\left( {2\frac{x}{y} – 1} \right){{\left( {\frac{x}{y} + 1} \right)}^2} \le 0}\\
      \Leftrightarrow &{\frac{x}{y} \le \frac{1}{2}}\\
      \Leftrightarrow &{y \ge 2x}
      \end{array}\]Do đó, ta được
      $\sqrt {2x + 1} \ge 2x \Leftrightarrow \Bigg[ \begin{array}{l}
      \left\{ \begin{array}{l}
      x \le 0\\
      2x + 1 \ge 0
      \end{array} \right.\\
      \left\{ \begin{array}{l}
      x > 0\\
      2x + 1 \ge 4{x^2}
      \end{array} \right.
      \end{array} \Leftrightarrow \left[ \begin{array}{l}
      – \frac{1}{2} \le x \le 0\\
      0 < x \le \frac{{1 + \sqrt 5 }}{4}
      \end{array} \right.$

    Kết hợp hai trường hợp, được tập nghiệm là $S=\left[ -\frac{1}{2};\frac{1+\sqrt{5}}{2} \right]$.

    4. Phương pháp đặt ẩn phụ đưa về phương trình tích

    Đôi khi, phương pháp này còn được gọi là Phương pháp ẩn phụ không hoàn toàn. Chúng tôi sẽ có một bài viết chi tiết hơn về phương pháp này. Mời Quý thầy cô và các em học sinh đón xem.

    Ví dụ 1. [HSG 9 Thừa Thiên Huế 2003] Giải phương trình $$ x^2+3x+1=(x+3)\sqrt{x^2+1} $$ Hướng dẫn. Đặt $ t=\sqrt{x^2+1} $ thì phương trình trở thành $ t^2-(x+3)t+3x=0 $ là phương trình bậc hai đối với ẩn $ t. $

    Ta có $ \Delta=(x-3)^2\ge 0 \; \forall x$ do đó \[ \left[\begin{array}{l}
    t=x\\ t=3
    \end{array}\right. \Leftrightarrow \left[\begin{array}{l}
    \sqrt{x^2+1}=x\\ \sqrt{x^2+x}=3
    \end{array}\right. \Leftrightarrow x=\pm 2\sqrt{2}\] Vậy phương trình đã cho có nghiệm $ x=\pm 2\sqrt{2}. $

    Ví dụ 2. Giải phương trình $$ 2(1-x)\sqrt{x^2+2x-1}=x^2-2x-1.$$ Hướng dẫn. Đặt ẩn phụ không hoàn toàn $ t=\sqrt{x^2+2x-1} $ đưa về phương trình bậc hai theo $ t. $

    Đáp số $ x=-1\pm \sqrt{6}. $

    Cách khác: Các em có thể phân tích trực tiếp phương trình đã cho thành $ (x-1)^2-2(x-1)\sqrt{x^2+2x-1}-2=0 $

    Ví dụ 3. [HSG Vĩnh Long 2012] Giải phương trình: $$4\sqrt{{{x}^{2}}+x+1}=1+5x+4{{x}^{2}}-2{{x}^{3}}-{{x}^{4}}$$ Hướng dẫn. Ta sử dụng phương pháp đặt ẩn phụ với $t=\sqrt{{{x}^{2}}+x+1}$ điều kiện $t\ge \frac{\sqrt{3}}{2}$ thì phương trình $ (\ref{ap1}) $ trở thành: \begin{align*}
    &4t=-{{t}^{4}}+7{{t}^{2}}-5\\
    \Leftrightarrow \;&{{t}^{4}}-6{{t}^{2}}+9-\left( {{t}^{2}}-4t+4 \right)=0 \\
    \Leftrightarrow \;&{{\left( {{t}^{2}}-3 \right)}^{2}}-{{\left( t-2 \right)}^{2}}=0\\
    \Leftrightarrow \;&\left( {{t}^{2}}-t-1 \right)\left( {{t}^{2}}+t-5 \right)=0
    \end{align*} Tìm được $t=\frac{1+\sqrt{5}}{2}$ và $t=\frac{-1+\sqrt{21}}{2}$. Từ đó tìm được hai nghiệm là $ x=\frac{-1-\sqrt{19-2\sqrt{21}}}{2}$ và $x=\frac{-1+\sqrt{19-2\sqrt{21}}}{2}$.

    5. Phương pháp đặt ẩn phụ đưa về hệ phương trình

    Ví dụ 1. Giải phương trình $$2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0$$ Hướng dẫn. Điều kiện: $x\le \frac{6}{5}$. Đặt $\left\{ \begin{array}{l}
    u=\sqrt[3]{3x-2} \\
    v=\sqrt{6-5x}
    \end{array} \right. $ thì chúng ta có $ \left\{ \begin{array}{l}
    {{u}^{3}}=3x-2 \\
    {{v}^{2}}=6-5x
    \end{array} \right.$

    Do đó, ta có hệ phương trình $$\left\{ \begin{array}{l}
    2u+3v=8 \\
    5{{u}^{3}}+3{{v}^{2}}=8 \end{array} \right.$$ Giải hệ này ta được $\left\{ \begin{array}{l} u=-2 \\
    v=4 \end{array} \right.\Rightarrow \left\{ \begin{array}{l}
    3x-2=-2 \\
    6-5x=16 \end{array} \right.\Rightarrow x=-2$.

    Thử lại, thấy $x=-2$ là nghiệm của PT. Vậy PT có nghiệm duy nhất $x=-2$.

    Ví dụ 2. Giải phương trình $$2\text{x}+1+x\sqrt{{{x}^{2}}+2}+(x+1)\sqrt{{{x}^{2}}+2\text{x}+3}=0 $$ Hướng dẫn. Đặt $\begin{cases}
    u=\sqrt{{{x}^{2}}+2} \\
    v=\sqrt{{{x}^{2}}+2x+3}
    \end{cases}
    $ điều kiện $ u,v>0 $ thì $$
    \begin{cases}
    {{u}^{2}}={{x}^{2}}+2 \\
    {{v}^{2}}={{x}^{2}}+2x+3 \\
    \end{cases}
    \Rightarrow \begin{cases}
    {{v}^{2}}-{{u}^{2}}=2x+1 \\
    {{x}^{2}}=\frac{{{v}^{2}}-{{u}^{2}}-1}{2} \\
    \end{cases}$$ Thay vào phương trình đã cho được $$(v-u)\left( (v-u)\left( 1+\frac{v+u}{2} \right)+\frac{1}{2} \right)=0\Leftrightarrow\left[ \begin{array}{l}
    v-u=0\\
    (v+u)\left( 1+\frac{v+u}{2} \right)+\frac{1}{2}=0\\
    \end{array} \right.$$ Vì $ u,v>0 $ nên suy ra $ u=v. $

    Vậy phương trình đã cho  tương đương với $$  v=u\Leftrightarrow \sqrt{{{x}^{2}}+2x+3}=\sqrt{{{x}^{2}}+2}\Leftrightarrow x=-\frac{1}{2} $$