Category: TOÁN HỌC

  • 100 Bài tập phương pháp tọa độ trong mặt phẳng

    100 Bài tập phương pháp tọa độ trong mặt phẳng

    100 Bài tập phương pháp tọa độ trong mặt phẳng

    Xem thêm Toán 10 – Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    1. Hệ trục tọa độ trong mặt phẳng

    Hệ trục tọa độ và tọa độ của điểm, tọa độ của vecto

    • Hệ trục tọa độ Descartes trong mặt phẳng. Hệ trục gồm hai đường thẳng $ x’Ox,y’Oy $ vuông góc với nhau; trên các đường thẳng đó chọn lần lượt các véc-tơ đơn vị $ \vec{i},\vec{j}. $

    phương pháp tọa độ trong mặt phẳng

    • Tọa độ của một điểm: \[ M(x,y) \Leftrightarrow \overrightarrow{OM}=x\vec{i}+y\vec{j}\]
    • Tọa độ của một véc-tơ: \[ \vec{v}=(x,y) \Leftrightarrow \vec{v}=x\vec{i}+y\vec{j}\]
    • Các phép toán và công thức. Cho ba điểm $ A(x_A,y_A) ,B(x_B,y_B)$, và các véc-tơ $\vec{v}_1(x_1,y_1),$ $\vec{v}_2(x_2,y_2) $ thì ta có:
      • Hai véc-tơ bằng nhau $ \vec{v}_1=\vec{v}_2 \Leftrightarrow \begin{cases} x_1=x_2\\y_1=y_2\end{cases}$
      • Tọa độ của $ \overrightarrow{AB}=(x_B-x_A,y_B-y_A) $
      • Trung điểm $ M $ của $ AB $ có tọa độ $ M(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2}) $
      • Trọng tâm $ G $ của tam giác $ABC$ có tọa độ $ G(\frac{x_A+x_B+x_C}{3},\frac{y_A+y_B+y_C}{3}) $
      • Phép cộng, trừ các véc-tơ $ \vec{v}_1\pm \vec{v}_2= (x_1\pm x_2,y_1\pm y_2)$
      • Nhân véc-tơ với một số $ k\vec{v}_1=(kx_1,kx_2) $ với mọi số thực $ k. $
      • Điểm chia đoạn thẳng \[ \overrightarrow{MA}+\lambda \overrightarrow{MB}=\vec{0} \Leftrightarrow \begin{cases}
        x_M=\frac{x_A+\lambda x_B}{1+\lambda}\\
        x_M=\frac{y_A+\lambda y_B}{1+\lambda}
        \end{cases}\] Đặc biệt khi $ \lambda=-1 $ thì $ M $ là trung điểm của $ AB. $
      • Hai véc-tơ cùng phương: $ \vec{v}_1 $ và $ \vec{v}_2 $ cùng phương $ \Leftrightarrow \vec{v}_1=k \vec{v}_2. $  Có thể sử dụng điều kiện $ \frac{x_1 }{x_2}=\frac{y_1}{y_2} $, với quy ước rằng mẫu bằng không thì tử bằng không.

    Tích vô hướng của hai véc-tơ.

    Cho hai véc-tơ $\vec{v}_1(x_1,y_1),\vec{v}_2(x_2,y_2) $ thì ta có:

    • Định nghĩa. $ \vec{v}_1\cdot \vec{v}_2= |\vec{v}_1|\cdot |\vec{v}_2|\cdot \cos(\vec{v}_1,\vec{v}_2)$
    • Biểu thức tọa độ: $ \vec{v}_1\cdot \vec{v}_2= x_1 x_2+y_1 y_2 $
    • Hệ quả:
      • $ \vec{v}_1\perp \vec{v}_2 \Leftrightarrow \vec{v}_1\cdot \vec{v}_2= 0 $
      • $ |\vec{v}_1|= \sqrt{x_1^2+y_1 ^2},\; AB=|\overrightarrow{AB}|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$
      • $\displaystyle \cos(\vec{v}_1,\vec{v}_2)=\frac{\vec{v}_1\cdot \vec{v}_2}{|\vec{v}_1|\cdot |\vec{v}_2|}=\frac{\text{tích vô hướng}}{\text{tích độ dài}} $

    Bài 1. Trong mặt phẳng tọa độ $ Oxy, $ cho điểm $ M(x, y). $ Tìm tọa độ các điểm:

    • $ M_1 $ đối xứng với $ M $ qua $ Ox. $
    • $ M_2 $ đối xứng với $ M $ qua $ Oy $
    • $ M_3 $ đối xứng với $ M $ qua gốc tọa độ $ O. $

    Bài 2. Cho ba điểm $ A(2,5),B(1,1),C(3,3). $ Tìm tọa độ của điểm $D$ sao cho $ABCD$ là hình bình hành. Tìm tọa độ tâm $ I $ của hình bình hành đó?

    Đáp số $ D(4,7),I(5/2,4) $

    Bài 3. Cho hình bình hành $ ABDC $ có $ A(-1, 3), B(2, 4), C(0, 1) $. Tìm tọa độ đỉnh $ D. $

    Bài 4. Cho tam giác $ ABC $ có các điểm $ M(1, 0), N(2, 2), P(-1, 3) $ lần lượt là trung điểm của các cạnh $ BC, CA, AB. $ Tìm tọa độ các đỉnh của tam giác.

    Bài 5. Cho $ A(3, 4), B(2, 5). $ Tìm $ x $ để điểm $ C(-7, x) $ thuộc đường thẳng $ AB $.

    Bài 6. Trong mặt phẳng tọa độ $Oxy$, thực hiện các yêu cầu sau:

    • Cho ba điểm $ A(-1, 1), B(1, 3), C(-2, 0). $ Chứng minh ba điểm $ A, B, C $ thẳng hàng.
    • Cho $ A(-1, 8), B(1, 6), C(3, 4). $ Chứng minh ba điểm $ A, B, C $ thẳng hàng.
    • Cho $ A(1, 1), B(3, 2), C(m + 4, 2m + 1). $ Tìm $ m $ để ba điểm $ A, B, C $ thẳng hàng
    • Cho bốn điểm $ A(0, 1), B(1, 3), C(2, 7), D(0, 3). $ Chứng minh đường thẳng $ AB $ và $ CD $ song song.
    • Cho bốn điểm $ A(-2, -3), B(3, 7), C(0, 3), D(-4, -5). $ Chứng minh rằng hai đường thẳng $ AB $ và $ CD $ song song.

    Bài 7. Cho tam giác $ ABC $ với $ A (3, 2), B (- 11, 0), C (5, 4). $ Tìm tọa độ trọng tâm $ G $ của tam giác $ ABC. $

    Bài 8. Cho $\Delta ABC $ có $ A (1, – 1), B (5, – 3) $ đỉnh $ C $ thuộc $ Oy $ và trọng tâm $ G $ thuộc $ Ox. $ Tìm tọa độ đỉnh $ C. $

    Bài 9. Cho $ A (- 2, 1), B (4, 5). $ Tìm tọa độ trung điểm $ I $ của đoạn thẳng $ AB $ và tìm tọa độ của điểm $ C $ sao cho tứ giác $ OACB $ là hình bình hành với $ O $ là gốc tọa độ.

    Bài 10. Trong mặt phẳng tọa độ $ Oxy $ cho ba điểm $ A(-1, 3), B(4, 2), C(3, 5). $

    • Chứng minh rằng ba điểm $ A, B, C $ không thẳng hàng.
    • Tìm tọa độ điểm $ D $ sao cho $ \overrightarrow{AD}=-3\overrightarrow{BC}. $
    • Tìm tọa độ điểm $ E $ sao cho $ O $ là trọng tâm của tam giác $ ABE. $

    Bài 11. Trong mặt phẳng tọa độ $ Oxy $ cho $ A(3,4),B(-1,2),I(4,-1). $ Xác định tọa độ các điểm $ C, D $ sao cho tứ giác $ ABCD $ là hình bình hành với $ I $ là trung điểm cạnh $ CD. $ Tìm tọa độ tâm $ O $ của hình bình hành $ ABCD. $

    Đáp số. $C(2,-2),D(6,0)$

    Bài 12. Trong hệ trục $ Oxy $ cho điểm $ A(-1, 2) $ và $ B(4, 5). $

    • Tìm tọa độ của diểm $ A’ $ đối xứng của $ A $ qua $ Ox. $
    • Tìm tọa độ của $ M $ trên $ Ox $ sao cho $ A’,M ,B $ thẳng hàng.

    Hướng dẫn. Điểm $ A(-1, 2) $ thì đối xứng của $ A $ qua $ Ox $ là $ A(-1 , -2). $

    Điểm $ M $ trên $ Ox $ nên có tọa độ dạng $ M(x_0, 0). $ Từ $ \overrightarrow{A’B} $ và $ \overrightarrow{A’M} $ cùng phương tìm được $ x_0=3/7. $

    Bài 13. [Đề thi Toán khối D năm 2010] Trong mặt phẳng toạ độ $ Oxy, $ cho tam giác $ ABC $ có đỉnh $ A(3,-7), $ trực tâm là $ H(3,-1), $ tâm đường tròn ngoại tiếp là $ I(-2,0) $. Xác định toạ độ đỉnh $ C $, biết $ C $ có hoành độ dương.

    Đáp số. $ C(-2+\sqrt{65},3) $

    2. Phương trình đường thẳng

    Phương trình đường thẳng

    • Phương trình tổng quát của đường thẳng $\Delta$ đi qua $M(x_{0},y_{0})$ và có một véc-tơ pháp tuyến $\vec{n}(a,b)$:
      \[ ax+by-(ax_{0}+by_{0})=0 \]
    • Phương trình tham số} của đường thẳng $\Delta$ đi qua $M(x_{0},y_{0})$ và có một véc-tơ chỉ phương $\vec{u}(a,b)$ là:\[
      \begin{cases} x =x_{0}+at\\ y =y_{0}+bt \end{cases}, (t\in \mathbb{R})
      \]
    • Phương trình chính tắc} của đường thẳng đi qua $ M(x_0,y_0) $ và có véc-tơ chỉ phương $ \vec{u}(a,b) $ mà $ ab\ne0 $ là $$\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}$$
    • Đường thẳng đi qua điểm $M(x_{0},y_{0})$ và cóhệ số góc} $k$ có phương trình: $$y-y_{0}=k(x-x_{0})$$
    • Véctơ chỉ phương và véc-tơ pháp tuyến vuông góc với nhau, do đó nếu véc-tơ pháp tuyến là $\vec{n}=(a,b)$ thì có thể chọn véc-tơ chỉ phương $\vec{u}=(-b,a)$ hoặc $\vec{u}=(b,-a);$ và ngược lại.
    • Hai đường thẳng song song thì có cùng các véc-tơ chỉ phương, cùng các véc-tơ pháp tuyến, hai đường thẳng vuông góc thì véc-tơ chỉ phương của đường thẳng này là véc-tơ pháp tuyến của đường thẳng kia và ngược lại. Tức là, nếu đường thẳng $\Delta$ có phương trình: $ax+by+c=0$ thì đường thẳng $\Delta’$
      • vuông góc với $\Delta$ là $\Delta’:-bx+ay+c’=0$ hoặc $\Delta’:bx-ay+c’=0$.
      • song song với $\Delta$ là $\Delta’:ax+by+c’=0$ với $ c\ne c’. $
    • Đường thẳng cắt hai trục tọa độ tại $A(a,0)$ và $B(0,b)$ có phương trình:
      $$\frac{x}{a}+\frac{y}{b}=1$$ Phương trình này được gọi là phương trình đoạn chắn.
    • Lấy một điểm thuộc đường thẳng ta có thể rút tọa độ $ x $ theo $ y $ hoặc ngược lại, nếu cần thì chuyển về phương trình tham số.

    Góc – Khoảng cách

    • Khoảng cách từ điểm $ M(x_0,y_0) $ đến đường thẳng $ \Delta:ax+by+c=0 $ là $$ d(M,\Delta)=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} $$
    • Góc giữa hai véc-tơ $ \vec{a},\vec{b} $ có $\cos(\vec{a},\vec{b})=\frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|}=\frac{\text{tích vô hướng}}{\text{tích độ dài}} $
    • Góc giữa hai đường thẳng\footnote{Bằng trị tuyệt đối của tích vô hướng chia tích độ dài các véc-tơ pháp tuyến của hai đường thẳng.} $ \Delta $ và $ \Delta’ $ có $$\cos(\Delta,\Delta’)=|\cos(\vec{n},\vec{n’})|=\frac{|\vec{n}.\vec{n’}|}{|\vec{n}|.|\vec{n’}|}$$

    2.1. Các bài tập cơ bản viết phương trình tham số, phương trình tổng quát của đường thẳng

    Bài 1. Cho $\Delta ABC$ với $A(3,2),B(1,1),C(5,6)$.

    • Viết phương trình tổng quát các cạnh của $\Delta ABC$.
    • Viết phương trình tổng quát của đường cao $AH$, đường trung tuyến$AM$.

    Bài 2. Viết phương trình đường thẳng $d$ biết nó

    • Đi qua giao điểm của 2 đường thẳng $d_{1}:2x-3y-15=0,d_{2}:x-12y+3=0$ và $d$ đi qua điểm $A(2,0)$.
    • Đi qua giao điểm của 2 đường thẳng $d_{1}:3x-5y+2=0,d_{2}:5x-2y+4=0$ và song song với đường thẳng $d_{3}:2x-y+4=0$.
    • Đi qua giao điểm của 2 đường thẳng $d_{1}:2x-3y+5=0,d_{2}:x-2y-3=0$ và vuông góc với đường thẳng $d_{3}:x-7y-1=0.$

    Bài 3. Tìm $m$ để hai đường thẳng: $x+(2m-3)y-3=0$ và $\begin{cases} x & =1-t\\ y & =2-t \end{cases}$ vuông góc với nhau.

    Bài 4. Lập phương trình tổng quát của 3 đường trung trực và 3 cạnh của $\Delta ABC$ biết các trung điểm của $BC,CA$ và $AB$ là $M(4,2),N(0,-1),P(1,4).$

    Bài 5. Cho đường thẳng $d:3x+4y-12=0$.

    • Tìm hình chiếu vuông góc $H$ của gốc $O$ trên $d$.
    • Tìm điểm đối xứng $O’$ của gốc $O$ qua $d$.
    • Viết phương trình đường thẳng $d’$ đối xứng của $d$ qua $O$.

    Bài 6. Cho tam giác $ ABC $ có trung điểm $ M $ của $ AB $ có tọa độ $ (- 1/2, 0) $, đường cao$ CH $ với $ H(- 1, 1) $, đường cao $ BK $ với $ K(1 , 3) $ và biết $ B $ có hoành độ dương.

    • Viết phương trình $ AB $.
    • Tìm tọa độ $ B, A $ và $ C $.

    Hướng dẫn. Đường thẳng $AB$ đi qua $H$ và $M$ nên có phương trình $ 2x+y+1=0. $

    Điểm $ B\in AB $ nên có tọa độ dạng $ B(b,-1-2b). $ Có $A$ đối xứng với $B$ qua $M\Leftrightarrow A(-1-b,1+2b).$ Mà $ \overrightarrow{AK}.\overrightarrow{BK}=0 \Leftrightarrow b=1.$ Từ đó tìm được $ A(-2,3),B(1,-3) $ và $ C(3,3) $.

    2.2. Sử dụng điểm thuộc đường thẳng (tham số hóa)

    Bài 1. Trong mặt phẳng tọa độ $Oxy$ cho các điểm $ A(1,0),B(-2,4),C(-1,4),D(3,5) $ và đường thẳng $ d:3x-y-5=0 $. Tìm điểm $ M $ trên $ d $ sao cho hai tam giác $ MAB, MCD $ có diện tích bằng nhau.

    Hướng dẫn. Phương trình đường thẳng $AB:4x+3y-4=0,$ đường thẳng $ CD:x-4y-17=0. $

    Vì $ M\in d $ nên có tọa độ dạng $ M(t,3t-5). $ Do đó $ d(M,AB)=…, d(M,CD)=… $

    Bài 2. Trong mặt phẳng tọa độ $Oxy$, cho đường thẳng $ d:x-3y-6=0 $ và điểm $ N(3,4) $. Tìm tọa độ điểm $ M $ thuộc đường thẳng $ d $ sao cho tam giác $ OMN $ có diện tích bằng $ \frac{15}{2}. $

    Hướng dẫn. Đáp số $ M(3,-1) $ và $ M(-7,-\frac{13}{3}) $.

    Bài 3. Cho tam giác $ ABC $ có diện tích bằng 2. Biết tọa độ $ A(1,0), B(0,2) $ và trung điểm $ I $ của $ AC $ nằm trên đường thẳng $ y = x $. Tìm toạ độ đỉnh $ C $.

    Hướng dẫn. Vì $ I $ thuộc đường thẳng $ y=x $ nên có tọa độ dạng $ I(t,t) $. Từ $ I $ là trung điểm $ AC $ suy ra $ C(2t-1,2t) $.

    Mặt khác, từ $ S_{\Delta ABC}=\frac{1}{2}AB.d(C,AB)=2 $ suy ra $ d(C,AB)= $

    Bài 4. Cho tam giác $ ABC $ có trung điểm của $ AB $ là $ I(1 , 3) , $ trung điểm $ AC $ là $ J(- 3, 1) $. Điểm $ A $ thuộc trục $ Oy $ và đường $ BC $ qua gốc tọa độ $ O $. Tìm tọa độ điểm $ A $, phương trình $ BC $ và đường cao vẽ từ $ B $.

    Hướng dẫn. Vì $A$ thuộc trục $ Oy $ nên có tọa độ $ A(0,a), $ suy ra $ B(2,6-a) $ và $ C(-6,2-a). $ Ta có đường thẳng $BC$ đi qua $O\Leftrightarrow \overrightarrow{OB},\overrightarrow{OC} $ cùng phương $ \Leftrightarrow a=5. $

    Bài 5. Trong mặt phẳng toạ độ $ Oxy $, cho hai đường thẳng $ d_1:x+y-3=0,d_2:x+y-9=0 $ và điểm $ A(1, 4) $. Tìm điểm $ B\in d_1,C\in d_2 $ sao cho tam giác $ ABC $ vuông cân tại $A$.

    Hướng dẫn. Gọi $ B(b,3-b) $ và $ C(c,9-c). $ Lập hệ, từ phương trình $ \overrightarrow{AB}.\overrightarrow{AC}=0 $ rút ra $ b-1=\frac{(b+1)(5-c)}{c-1} $ thay vào phương trình còn lại được $ (b+1)^2=(c-1)^2 $. Đáp số $ B(2,1),C(4,5) $ hoặc $ B(-2,5),C(2,7). $

    Bài 6. Trong hệ tọa độ $Oxy,$ cho hình thoi $ABCD$ cạnh $AC$ có phương trình là: $x+7y-31=0,$ hai đỉnh $ B,D $ lần lượt thuộc các đường thẳng $ d_1:x+y-8=0,d_2:x-2y+3=0 $. Tìm tọa độ các đỉnh của hình thoi biết rằng diện tích hình thoi bằng 75 và đỉnh $ A $ có hoành độ âm.

    Hướng dẫn. Đáp số $A(-11,6),B(0,8),C(10,3),D(-1,1).$

    Bài 7. Trong mặt phẳng tọa độ $ Oxy $ cho điểm $ A(1,1) $ và đường thẳng $ \Delta:2x+3y+4=0. $Tìm tọa độ điểm $ B $ thuộc $ \Delta $ sao cho đường thẳng $ AB $ và $ \Delta $ hợp với nhau góc $ 45^\circ $.

    Đáp số. $ B(-\frac{32}{13},\frac{4}{13}),B(\frac{22}{13},-\frac{32}{13}) $

    Bài 8 .Cho đường thẳng $ \Delta:x-2y-2=0$ và hai điểm điểm $A(-1,2),B(3,4).$ Tìm điểm $ M\in \Delta $ sao cho $ 2MA^2+MB^2 $ đạt giá trị nhỏ nhất.

    Hướng dẫn. Sử dụng hàm số. Đáp số $ M(\frac{26}{15},-\frac{2}{15}) $

    Bài 9. Cho điểm $ C(2,-5) $ và đường thẳng $ \Delta:3x-4y+4=0. $ Tìm trên $ \Delta $ hai điểm $ A,B $ đối xứng nhau qua $ I(2,\frac{5}{2}) $ sao cho diện tích tam giác $ ABC $ bằng 15.

    Hướng dẫn. $(0,1),(4,4).$

    Bài 10. Trong mặt phẳng toạ độ $ Oxy $, cho đường thẳng $ d:2x-y+3=0 $ và hai điểm $ A(1,0),B(2,1). $ Tìm điểm $ M $ trên $ d $ sao cho $ MA + MB $ nhỏ nhất.

    Hướng dẫn. Nhận xét $ A,B $ nằm cùng phía so với đường thẳng $ d$. Tìm được $ A'(-3,2) $ đối xứng với $ A $ qua $d$ và phương trình $ A’B:x+5y-7=0. $

    Ta có $ MA+MB= MA’+MB\ge A’B $ nên $ MA+MB $ nhỏ nhất $ \Leftrightarrow M,A’,B $ thẳng hàng hay $ M $ là giao điểm của $ A’B $ với $ d. $ Đáp số $ M(-\frac{8}{11},\frac{17}{11}). $

    2.3. Sử dụng véc-tơ pháp tuyến

    Bài 1. Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $ d:x-\sqrt{3} y-2=0,$ điểm $ A(1,\sqrt{3}) $ và điểm $ B $ không thuộc đường thẳng $ d. $ Lập phương trình đường thẳng $AB$ biết khoảng cách từ điểm $B$ đến giao điểm của đường thẳng $ d$ và $ AB $ bằng hai lần khoảng cách từ $ B $ đến $ d. $

    Hướng dẫn. Gọi $ C $ là giao điểm của $ d $ và $ AB, H $ là hình chiếu của $ B $ lên $ d$ thì $\sin(d,AB)=\frac{BH}{BC}=\frac{1}{2}. $

    Bài 2. [HVKTQS 2001] Tam giác $ ABC $ cân đỉnh $ A $, cạnh đáy $ BC $ có phương trình $x-3y-1=0$, cạnh bên $ AB $ có phương trình $x-y-5=0$, đường thẳng $ AC $ đi qua điểm $M(-4;1)$. Tìm toạ độ đỉnh $ C? $

    Hướng dẫn. Giả sử đường thẳng $ AC $ có một vectơ pháp tuyến $\overrightarrow{n}\left( a,b \right)$, dùng điều kiện $\cos \left( AB,BC \right)=\cos \left( AC,BC \right)$, lập được phương trình hai ẩn: $7{{a}^{2}}-{{b}^{2}}+6ab=0$.
    Suy ra phương trình $ AC: x+7y-3=0$ (Chú ý loại trường hợp song song với $ AB $). Từ đó tìm được toạ độ điểm $C\left( \frac{8}{5};\frac{1}{5} \right)$

    2.4. Sử dụng phương trình đoạn chắn

    Bài 1. Viết phương trình đường thẳng qua $ M(3 , 2) $ và cắt tia $ Ox $ tại $ A $, tia $ Oy $ tại $ B $ sao cho

    1. $ OA + OB = 12 $;
    2. tạo với hai trục một tam giác có diện tích là 12.

    Hướng dẫn. 1. $ x +3y-9 =0, 2x+y-8=0. $ 2. $ 2x+3y-12=0. $

    Bài 2. Cho điểm $ M(3 , 3) $. Viết phương trình đường thẳng $ \Delta $ cắt $ Ox $ và $ Oy $ tại $ A $ và $ B $ sao cho tam giác $ MAB $ vuông tại $ M $ và $ AB $ qua điểm $ I(2 , 1) $.

    Hướng dẫn. Gọi tọa độ $ A(a,0),B(0,b) $ với $ ab\ne0 $ thì $ \overrightarrow{MA}.\overrightarrow{MB}=0 \Leftrightarrow a+b=6. $ Mặt khác phương trình đường thẳng $ AB: \frac{x}{a}+\frac{y}{b}=1,$ mà $ I(2,1)\in AB \Leftrightarrow a+2b=ab. $
    Từ đó tìm được $a=4, b=2 $ hoặc $ a=3,b=3. $

    Bài 3. Trên mặt phẳng $Oxy$ cho điểm $A(2,-2)$. Viết phương trình đường thẳng $\Delta$ đi qua điểm $M(3,1)$ và cắt trục $Ox,Oy$ tại $B$ và $C$ sao cho tam giác $ABC$ cân.

    Hướng dẫn. $\frac{x}{2}+\frac{y}{-2}=1$

    Bài 4. Cho điểm $ M(9 , 4) $. Viết phương trình đường thẳng $ \Delta $ qua $ M $, cắt hai tia $ Ox $ và tia $ Oy $ tại $ A $ và $ B $ sao cho tam giác $ OAB $ có diện tích nhỏ nhất.

    Hướng dẫn. Gọi tọa độ $ A(a,0),B(0,b) $ với $ a,b>0 $ thì phương trình đường thẳng $ \Delta $ cần tìm là $ \frac{x}{a}+\frac{y}{b}=1 $. Đường thẳng $\Delta$ qua $ M(9,4) \Leftrightarrow \frac{9}{a}+\frac{4}{b}=1.$ Áp dụng Cauchy có \[ 1=\frac{9}{a}+\frac{4}{b}\ge 2\sqrt{\frac{36}{ab}}=\frac{12}{\sqrt{ab}} \] Suy ra $ \sqrt{ab}\ge 12\Rightarrow S_{\Delta OAB}=\frac{1}{2}ab\ge 72 $.

    Vậy tam giác $ OAB $ có diện tích nhỏ nhất là 72 khi $ \frac{9}{a}=\frac{4}{b}=\frac{1}{2} \Leftrightarrow a=18,b=8. $ Khi đó phương trình đường thẳng $\Delta$ là $ 4x+9y-72=0. $

    Bài 5. Trong mặt phẳng tọa độ $Oxy$ cho điểm $ M(1,2) $. Viết phương trình đường thẳng $ d $ đi qua $M$ và cắt các trục $Ox,Oy$ lần lượt tại $ A, B $ khác $ O $ sao cho $ \frac{9}{OA^2}+\frac{4}{OB^2} $ nhỏ nhất.

    Hướng dẫn. Sử dụng Bunhia. Đáp số $ 2x+9y-20=0. $

    2.5. Các bài toán liên quan đến tam giác

    Bài 1. Cho tam giác $ ABC $ có $ A(2;2) $. Hai đường cao xuất phát từ đỉnh $ B $ và $ C $ lần lượt có phương trình là: $9x-3y-4=0;x+y-2=0$. Viết phương trình đường các cạnh và tính diện tích của tam giác.

    Bài 2. Lập phương trình các cạnh của $\Delta ABC$ nếu cho $B(-4,5)$ và hai đường cao của tam giác có phương trình: $5x+3y-4=0$và $3x+8y+13=0.$

    Bài 3. Viết phương trình các cạnh của tam giác $ ABC $ có đỉnh $ C(4,-1) $, đường cao và trung tuyến kẻ từ đỉnh $ A $ có phương trình lần lượt là ${{d}_{1}}:2x-3y+12=0$ và ${{d}_{2}}:2x+3y=0$.

    Bài 4. Trong mặt phẳng $ Oxy $ cho $ \Delta ABC $ có $ A(2,1). $ Đường cao qua đỉnh $ B $ có phương trình $ x-3y-7=0. $ Đường trung tuyến qua đỉnh $ C $ có phương trình $ x+y+1=0. $ Xác định tọa độ $ B $ và $ C. $ Tính diện tích tam giác $ ABC $.

    Hướng dẫn. $ C(4,-5), B(1,-2), S=6. $

    Bài 5. Cho tam giác $ABC$ có đường cao $ BH:x+2y-3=0, $ trung tuyến $ AM:3x+3y-8=0. $ Cạnh $ BC $ đi qua $ N(3,-2) $ và $ C $ thuộc đường thẳng $ d:x-y+2=0. $ Tìm tọa độ các đỉnh của tam giác.

    Hướng dẫn. Gọi tọa độ $ B(3-2b,b) $ và $ C(c,c+2) $ và biểu diễn tọa độ $ M $ theo $ b,c. $ Mà $ M\in AM $ nên $ 3b-6c+1=0. $ Từ $ B,N,C $ thẳng hàng tìm được $ 3bc+5b+2c-6=0. $ Từ đó tìm được tọa độ $ B,C. $

    Bài 6. [ĐHBK 1994] Phương trình hai cạnh của một tam giác trong mặt phẳng toạ độ là: ${{d}_{1}}:5x-2y+6=0$ và ${{d}_{2}}:4x+7y-21=0$. Viết phương trình cạnh thứ ba biết rằng trực tâm của tam giác trùng với gốc toạ độ.

    Bài 7. Cho tam giác $ABC$ có $ A(1,5). $ Điểm $ B $ nằm trên đường thẳng $ d_1:2x+y+1=0 $ và chân đường cao hạ từ đỉnh $ B $ xuống $ AC $ nằm trên đường thẳng $ d_2:2x+y-8=0. $ Biết $ M(3,0) $ là trung điểm của $ BC. $ Tìm tọa độ các đỉnh $ B,C$.

    Hướng dẫn. Gọi $ B(m,-2m-1) $ và $ H(n,8-2n) $ suy ra $ C(6-m,2m+1). $ Từ $ A,H,C $ thẳng hàng tìm được $ m=11-6n. $ Mặt khác $ AH\perp BH $ nên tìm được $ n=2 $ hoặc $ n=\frac{52}{35}. $

    Bài 8. Cho $\Delta ABC$ có trọng tâm $G(-2,-1)$ và các cạnh $AB:4x+y+15=0$, $AC:2x+5y+3=0$

    • Tìm đỉnh $A$ và trung điểm $M$ của cạnh $BC$.
    • Tìm đỉnh $B$ và viết phương trình đường thẳng $BC$.

    Bài 9. Cho tam giác $ ABC $ có đỉnh $ A(-1;-3) $, đường trung trực của đoạn $ AB $ là: $ 3x+2y-4=0 $. Trọng tâm $ G(4;-2) $. Tìm tọa độ $ B, C $.

    Hướng dẫn. $ B(5;1),C(8;-4). $

    Bài 10. Cho tam giác $ ABC $ có đỉnh $ A $ thuộc $ d: x-4y-2=0. $ Cạnh $ BC $ song song với đường thẳng $d$, đường cao $ BH:x+y+3=0 $ và $ M(1;1) $ là trung điểm của $ AC $. Tìm tọa độ của các đỉnh $ A, B, C $.

    Hướng dẫn. $ A\left( { – \frac{2}{3}; – \frac{2}{3}} \right),B(-4;2),C(\frac{8}{3},\frac{8}{3}) $.

    Bài 11. Trong mặt phẳng $ Oxy, $ cho các điểm $ A(1,0),B(-2,4),C(-1,4),D(3,5) $ và đường thẳng $ d:3x-y-5=0. $ Tìm điểm $ M $ trên $ d $ sao cho hai tam giác $ MAB, MCD $ có diện tích bằng nhau.

    Hướng dẫn. $ M(8,9) $ hoặc $ M(\frac{11}{12},-\frac{27}{12}) $

    Bài 12. Cho hình tam giác $ ABC $ có diện tích bằng 2. Biết $ A(1,0),B(0,2) $ và trung điểm $ I $ của $ AC $nằm trên đường thẳng $ d:y=x. $ Tìm toạ độ đỉnh $ C. $

    Hướng dẫn. $ C(\frac{1+\pm \sqrt{3}}{2},\frac{1+\pm \sqrt{3}}{2}) $

    Bài 13. Cho tam giác $ ABC $ với $ A(1,1),B(-2,5) $ và đỉnh $ C $ nằm trên đường thẳng $ x-4=0,$ trọng tâm $ G $ của tam giác nằm trên đường thẳng $ 2x-3y+6=0. $ Tính diện tích tam giác $ ABC $.

    Hướng dẫn. $S=\frac{15}{2} $

    Bài 14. Cho tam giác $ ABC $ có $ A(2,-1),B(1,-2), $ trọng tâm $ G $ nằm trên đường thẳng $ d:x+y-2=0.$ Tìm tọa độ tỉnh $ C $ biết diện tích tam giác bằng $ \frac{27}{2}. $

    Hướng dẫn. $ C(-6,12),C(\frac{38}{3},-\frac{20}{3}) $

    Bài 15. Cho tam giác $ABC$ có $ C(-1,-1) $; phương trình cạnh $ AB:x+2y-5=0 $ và $ AB=\sqrt{5}. $ Trọng tâm $ G $ của tam giác $ABC$ thuộc đường thẳng $d:x+y-2=0$ . Xác định tọa độ các đỉnh còn lại của tam giác?

    Hướng dẫn. Gọi $ A(5-2a,a) $ và $ B(5-2b,b) $ thuộc $ AB $ thì từ $ AB^2=5 $ suy ra $ a-b=\pm1. $ Suy ra tọa độ trọng tâm $ G $. Mà $ G\in d $ nên tìm được Hướng dẫn.

    Bài 16. Cho tam giác $ ABC $ có trọng tâm $ G (1; 1) $, đường cao từ đỉnh $ A $ có phương trình $ d:2x – y + 1 = 0 $. Các đỉnh $ B $ và $ C $ thuộc đường thẳng $ d’: x + 2y – 1 = 0 $. Xác định tọa độ các đỉnh của tam giác biết tam giác $ ABC $ có diện tích bằng 6.

    Hướng dẫn. Gọi $ M $ là trung điểm $ BC $ và $ A(a,2a+1) $ thì từ $ \overrightarrow{AG}=2\overrightarrow{GM} $ có $ M(\frac{3-a}{2},1-a) $. Mà $ M\in d’ $ nên tìm được $ A(1;2) $ và $ M(1;0). $ Gọi $ H $ là giao điểm của $ d $ và $ d’ $ thì $ H(-\frac{1}{5},\frac{3}{5}) $ do đó $ AH=\frac{6}{\sqrt{5}} $. Từ diện tích bằng $ 6 $ tìm được $ MB=MC=\sqrt{5}. $

    Đáp số $ B(-1,1),C(3,-1) $ và $ B(3,-1),C(-1,1) $.

    Bài 17. Cho tam giác $ ABC $ biết $ A(5,2). $ Phương trình đường trung trực cạnh $ BC, $ đường trung tuyến $ CC’ $ lần lượt là $ x+y-6=0,2x-y+3=0. $ Tìm tọa độ các đỉnh của tam giác $ ABC. $

    Hướng dẫn. $ B(37,88),C(-20,-31). $

    Bài 18. Trong mặt phẳng với hệ toạ độ $ Oxy, $ hãy viết phương trình các cạnh của tam giác $ ABC $ biết trực tâm $ H(1,0), $ chân đường cao hạ từ đỉnh $ B $ là $ K (0,2), $ trung điểm cạnh $ AB $ là $ M (3,1). $

    Hướng dẫn. $ AB:3x-y-8=0,BC:3x+4y+2=0 $

    Bài 19. Cho tam giác $ ABC $ có phương trình cạnh $ AB:x-y-2=0, $ phương trình cạnh $ AC:x+2y-5=0. $ Biết trọng tâm của tam giác là $ G(3,2). $Viết phương trình cạnh $ BC. $

    Hướng dẫn. $ B(5,3),C(1,2)… $

    Bài 20. Cho tam giác $ ABC $ biết $ A(1,-1),B(2,1), $ diện tích bằng $ \frac{11}{2} $ và trọng tâm $ G $ thuộc đường thẳng $ d:3x+y-4=0. $ Tìm tọa độ đỉnh $ C. $

    Hướng dẫn. $C(1,0)\vee C(\frac{17}{5},-\frac{26}{5})$

    Bài 21. Tam giác $ ABC $ có $ AB=\sqrt{5}, C(-1,-1), AB:x+2y-3=0, $ trọng tâm $ G $ thuộc đường thẳng $ x+y-2=0. $ Xác định tọa độ $ A,B? $

    Hướng dẫn. $ (6,\frac{-3}{2}) $ và $ (4,\frac{-1}{2}) $

    Bài 22. Cho tam giác $ ABC $ có $ A(2,-3),B(3,-2), $ diện tích bằng $ \frac{3}{2} $ và trọng tâm thuộc đường thẳng $ \Delta:3x-y-8=0. $ Tìm tọa độ đỉnh $ C. $

    Hướng dẫn. Giả sử $ G(t,3t-8). $ Từ tọa độ trung điểm $ M $ của $ AB $ suy ra $ C(2t-5,9t-19)… $ Đáp số $C(\frac{-7\pm6\sqrt{5}}{3},-7\pm9\sqrt{5}) $

    Bài 23. Viết phương trình các cạnh của tam giác $ ABC $ biết $ B(2,-1) $ đường cao và đường phân giác trong qua đỉnh $ A, C $ lần lượt là $ d_1:3x-4y+27=0,d_2:x+2y-5=0. $

    Hướng dẫn. $ BC:4x+3y-7=0, AC:y-3=0 $ hoặc $ AC:4x+3y-5=0,AB:… $

    Bài 24. Cho tam giác $ ABC $ có $ A(1,-2), $ đường cao $ CH:x-y+1=0, $ phân giác trong $ BN:2x+y+5=0. $ Tìm tọa độ các đỉnh $ B,C $ và tính diện tích tam giác?

    Hướng dẫn. $B(-4,3)),C(-\frac{13}{4},-\frac{9}{4}), S=\frac{9\sqrt{10}}{4}. $

    Bài 25. Cho tam giác $ABC$ vuông tại $ A $ có $ B $ và $ C $ đối xứng nhau qua gốc tọa độ $ O. $ Đường phân giác trong góc $ \widehat{B} $ có phương trình $ d:x+2y-5=0. $ Tìm tọa độ các đỉnh của tam giác biết $ AC $ đi qua $ K(6,2). $

    Hướng dẫn. Gọi $ B(5-2b,b) $ thì $ C(2b-5,-b) .$ Gọi $ I $ đối xứng với $ O $ qua đường phân giác thì $ I(2,4) $ và $ I\in AB. $ Từ $ AB\perp AC $ tìm được $ b=1 $ hoặc $ b=5. $

    Bài 26. Cho tam giác $ABC$ có đường cao hạ từ $ A $ là $ x-2y=0, $ đường phân giác trong góc $ \widehat{A} $ là $ x-y+1=0. $ Biết $ M(1,0) $ nằm trên $ AB $ và diện tích tam giác $ABC$ là $ \frac{180}{7} $. Tìm tọa độ các đỉnh của tam giác.

    Hướng dẫn. Tìm được ngay $ A(-2,-1) $ và $ AB:x-3y-1=0 $. Gọi $ N $ là điểm đối xứng với $ M $ qua đường phân giác thì $ N(-1,2) $ và $ N\in AC. $ Từ đó tìm được $ AC:3x-y+5=0. $ Gọi $ B(3m+1,m) $ và $ C(n,3n+5) $ thì từ $ AH\perp BC $ suy ra $ 5n-7m+3=0. $ Kết hợp với diện tích tam giác $ABC$ bằng $ \frac{180}{7} $ suy ra $ m=\frac{8}{7} $ hoặc $ m=-\frac{22}{7} $.

    Bài 27. Cho tam giác $ ABC $ cân tại $ A, $ biết phương trình đường thẳng $ AB, BC $ lần lượt là: $ x+2y-5=0,3x-y+7=0. $ Viết phương trình đường thẳng $ AC, $ biết rằng $ AC $ đi qua điểm $ F(1,-3). $

    Hướng dẫn. $x+8y+23=0,4x+7y+25=0.$

    Bài 28. Cho tam giác $ABC$ cân tại $ A $ và phương trình các cạnh $ AB,BC $ lần lượt là $ 7x-y+17=0,x-3y-9=0. $ Viết phương trình đường cao hạ từ $ C $ biết $ M(2,-1) $ thuộc đường thẳng $ AC. $

    Hướng dẫn. Gọi véctơ pháp tuyến của $ AB $ là $ \vec{n}(a,b) $. Đáp số $ x+7y+11=0. $

    Bài 29. Trong mặt phẳng với hệ toạ độ vuông góc $Oxy$, cho tam giác $ABC$ cân tại $A$. Biết phương trình các đường thẳng $AB$, $BC$ theo thứ tự là \[(d_1): 2x + y -1 = 0, (d_2): x + 4y + 3 = 0.\] Lập phương trình đường cao qua đỉnh $B $ của tam giác $ABC$.

    Hướng dẫn. $31x +22y – 9 = 0$.

    Bài 30. Cho tam giác $ABC$ cân tại $A$, biết $AB:x + 3y + 5 = 0 $, $BC: x – y + 1 = 0$, đường thẳng $AC$ đi qua điểm $M(3;0)$. Tìm toạ độ các đỉnh $A$, $B$, $C$.

    Hướng dẫn. $A(4;-3)$, $B(-2;-1)$, $C(2;3)$.

    Bài 31. Cho tam giác $ ABC $ cân tại $ A $, phương trình cạnh $ BC $ là $ d:2x – y + 3 = 0 $. Điểm $ I (-2; -1) $ là trung điểm cạnh $ BC $, điểm $ E (4; 1) $ nằm trên cạnh $ AB $. Tìm tọa độ các đỉnh của tam giác biết diện tích tam giác $ ABC $ bằng 90.

    Hướng dẫn. Chỉ ra $ AI $ vừa là đường cao vừa là phân giác, có phương trình $ AI: x+2y+4=0.$ Qua $ E $ kẻ đường thẳng vuông góc với $ AI $ và cắt $ AI $ tại $ F, $ cắt $ AC $ tại $ M. $ Viết được phương trình $ EM, $ từ đó tìm được $ M(0,7) $. Gọi $ B(b,2b+3) $ thì $ C(-4-b,5-2b) $. Tam giác $ABC$ cân tại $ A $ nên $ \cos(BE,BC)=\cos(MC,BC) $. Tìm được $ b=1 $ và $ b=4. $ Với mỗi trường hợp của $ b $ tìm được tọa độ $ C,A $ tương ứng.

    Bài 32. Cho tam giác $ ABC $ cân tại $ A $, có trực tâm $ H (-3; 2) $. Gọi $ D, E $ là chân đường cao hạ từ $ B $ và $ C $. Điểm $ A $ thuộc đường thẳng $ d:x – 3y – 3 = 0 $, điểm $ F (-2; 3) $ thuộc đường thẳng $ DE $ và $ HD = 2 $. Tìm tọa độ đỉnh $ A $.

    Hướng dẫn. Có $ HD=2 $ nên $ (x_D+3)^2+(y_D-2)^2=4. $ Lấy $ A(3a+3,a) $ thì từ $ AD\perp DH $ nên có $ (x_D-3a-3)(x_D+3)+(y_D-a)(y_D-2)=0. $ Từ hai phương trình này tìm được $ (6+3a)x_D+(a-2)y_D+7a+18=0 $. Tương tự, có $ (6+3a)x_E+(a-2)y_E+7a+18=0 $ nên phương trình $ DE $ có dạng $ (6+3a)x+(a-2)y+7a+18=0 $. Mà $ F\in DE $ nên tìm được $ a=0. $ Đáp số $ A(3,0) $.

    Bài 33. Trong mặt phẳng với hệ trục tọa độ $ Oxy, $ cho tam giác $ ABC $ cân tại $ A $ có $ AB:3x+2y-7=0 $ và $ BC:2x-y=0. $ Lập phương trình đường thẳng chứa đường cao $ BH $ của $ \Delta ABC. $

    Bài 34. Trong mặt phẳng với hệ tọa độ $ Oxy, $ cho tam giác $ ABC $ có trực tâm $H(3,0).$ Biết $M(1,1)$ và $N(4,4)$ lần lượt là trung điểm của hai cạnh $AB, AC.$ Tìm tọa độ các đỉnh của tam giác $ABC.$

    Đáp số. $ A(-1,4),B(3,-2),C(9,4) $ hoặc $ A(\frac{5}{2},\frac{1}{2}), B(\frac{-1}{2},\frac{3}{2}), C(\frac{11}{2},\frac{15}{2}). $

    Bài 35. Tam giác $ ABC $ có $ B(2,-1), $ đường cao và đường phân giác kẻ từ $ A,C $ lần lượt là $ 3x-4y+27=0, x+2y-5=0. $ Viết phương trình các cạnh của tam giác.

    Hướng dẫn. $ A(-5,3) $ và $ AB:4x+7y-1=0. $

    Bài 36. [Đề thi thử SGD Bắc Ninh 2014] Cho tam giác $ ABC $ cân tại $ A(6,6), $ đường thẳng $ \Delta:x+y-4=0 $ đi qua trung điểm hai cạnh $ AB,AC. $ Điểm $ E(1,-3) $ nằm trên đường cao đi qua đỉnh $ C. $ Tìm tọa độ $ B,C? $ Bắc Ninh K.B NC 2014

    Hướng dẫn. Gọi được $ H(-2,-2) $ đối xứng với $ A $ qua $ \Delta $ thì $ H $ là trung điểm $ BC. $ Suy ra $ BC:x+y+4=0. $ Giả sử $ B(t,-4-t) $ thì $ C(-4-t,t). $ Từ $ \overrightarrow{AB}.\overrightarrow{CE} $ tìm được $ B(0,-4), C(-4,0) $ hoặc $ B(-6,2),C(2,-6). $

    Bài 37. Tam giác $ ABC $ có $ A(1,5) $, trọng tâm $ G(1,3) $ và trực tâm $ H(-23,17). $ Tìm tọa độ $ B,C $ biết $ x_B>x_C. $

    Hướng dẫn. Gọi $ M $ là trung điểm $ BC $, tìm được $ M(1,2). $ Kẻ đường kính $ AD $ thì tứ giác $ BHCD $ là hình bình hành, suy ra $ D(25,-13). $ Gọi $ I $ là tâm đường tròn, suy ra $ I(13,-4). BC:2x-y=0.$ Đặt $ B(b,2b), C(c,2c). $ Có $ IA=IB=IC $ tìm được $ B(4,8), C(-2,-4). $ Đáp số $B(4,8), C(-2,-4).$

    Bài 38. Tam giác $ABC$ có $ A(-1,-3) $, trực tâm $ H(1,-1) $ và tâm đường tròn ngoại tiếp là $ I(2,-1). $ Tìm tọa độ các đỉnh của tam giác.

    Hướng dẫn. Gọi $ D $ là điểm đối xứng với $ A $ qua $ I $ thì $ AD $ là đường kính của đường tròn $ (I). $ Chỉ ra $ BHCD $ là hình bình hành và tìm được $ BC:x+y-2=0. $

    Bài 39. [Đề thi thử trường chuyên Vĩnh Phúc] Cho tam giác $ ABC $ vuông cân tại $ A, $ điểm $ A $ có hoành độ dương và nằm trên đường thẳng $ \Delta:x-4y+6=0, BC: 2x-y-7=0, M(-1,1)\in AC.$ Tìm tọa độ các đỉnh của tam giác.

    Hướng dẫn. Giả sử điểm $A(4a-6,a)\in \Delta.$ Có $ \cos (\overrightarrow{MA},\vec{u}_{BC})=\cos 45^\circ, $ tìm được $ A(2,2). $ Viết phương trình $ AC, $ tìm được tọa độ điểm $ C(5,3). $ Từ $ \overrightarrow{AB}.\overrightarrow{AC}=0 $ và $ B\in BC $ tìm được $ B(3,-1). $

    Bài 40. [Đề thi thử Đặng Thúc Hứa năm 2014] Cho tam giác $ ABC $ vuông tại điểm $A$. Lấy điểm $M$ thuộc đoạn $ AC $ sao cho $ AB=3AM. $ Đường tròn tâm $ I $ đường kính $ CM $ cắt $ BM $ tại $ D. $ Phương trình $ CD:x-3y-6=0. $ Xác định tọa độ các đỉnh tam giác $ ABC $ biết $ N(\frac{4}{3},0)\in BC $ và điểm $ C $ có hoành độ dương.

    Hướng dẫn. Có $\cos \widehat{ACD}= \cos \widehat{ABM}=\frac{3}{\sqrt{10}}. $ Giả sử $ C(3t+6,t) $ thì $ \cos \widehat{ACD}=\cos (\overrightarrow{IC},\vec{u}_{CD}) $ tìm được $C(3,-1). $ Viết phương trình đường thẳng $ BC,BM $ suy ra tọa độ $B(-2,2)$. Viết phương trình $ AB, CN $ suy ra tọa độ $ A(-2,-1). $

    Bài 41. [Đề thi thử trường SPHN Lần 4 năm 2014] Cho $ C(6,0) $ và đường thẳng $ d:3x-y-10=0, \Delta:3x+3y-16=0 $ lần lượt là phân giác trong góc $ \widehat{A} $ và đường thẳng vuông góc với $ AC. $ Biết $ AC>AB $ và ba đường thẳng $ \Delta,d, $ trung trực của $ BC $ đồng quy. Tìm tọa độ điểm $B$.

    Hướng dẫn. Giả sử giao điểm của $ d$ và $ \Delta $ là $ I. $ Gọi $ E $ đối xứng với $ B $ qua $ d $ thì $ E $ thuộc đoạn $ AC $ và $ IB=IE=IC $ nên $ \Delta $ là trung trực của $ CE. $ Gọi $ H=\Delta\cap AC, $ tìm được $ H(\frac{17}{3},-\frac{1}{3}). $ Suy ra $ E(\frac{16}{3},-\frac{2}{3}). $ Đáp số $ B(\frac{4}{3},\frac{2}{3}). $

    Bài 42. [Đề thi thử trường Chuyên Lào Cai năm 2015] Trong mặt phẳng với hệ tọa độ $ Oxy, $ cho tam giác $ ABC $ có trực tâm $ H(5,5), $ phương trình đường thẳng $ BC:x+y-8=0. $ Biết đường tròn ngoại tiếp tam giác $ ABC $ đi qua hai điểm $ M(7,3),N(4,2). $ Tính diện tích tam giác $ ABC. $

    Hướng dẫn. Tìm được $ H'(3,3) $ là điểm đối xứng với $ H $ qua $ BC $ thì $ H’ $ nằm trên đường tròn ngoại tiếp tam giác $ ABC. $ Như vậy, đường tròn ngoại tiếp tam giác $ ABC $ đi qua ba điểm $ M,N,H’. $ Do đó phương trình đường tròn ngoại tiếp là $ x^2+y^2-10x-8y+36=0. $ Từ đó tìm được $ A(6,6) $ và $ B,C $ có tọa độ $ (3,5),(6,2). $ Diện tích $S=6.$

    Bài 43. Cho tam giác $ABC$ có trực tâm $ H(2,2) $; tâm đường tròn ngoại tiếp $ I(1,2) $ và trung điểm của $ BC $ là $ M(\frac{5}{2},\frac{5}{2}). $ Tìm tọa độ các đỉnh của tam giác biết $ x_B>x_C. $

    Hướng dẫn. Gọi $ G $ là trọng tâm tam giác $ABC$ thì $ 2\overrightarrow{HI}=3\overrightarrow{HG} $. Từ đó tìm được $ G(\frac{4}{3},2) $ và $ A(-1,1) $. Đáp số $ B(3,1) $ và $ C(2,4). $

    Bài 44. Viết phương trình các cạnh của tam giác $ABC$ biết rằng $B(2; -7)$ và nếu $ 3x + y + 11 = 0$ và $x + 2y + 7 = 0$ lần lượt là phương trình đường cao và đường trung tuyến của tam giác kẻ từ các đỉnh khác nhau.

    (Find the equations of the sides of a triangle having $B(2; -7)$ as a vertex, if $3x + y + 11 = 0$ and $x + 2y + 7 = 0$ are the respective equations of an altitude and a median drawn from diferrent vertices.)

    Hướng dẫn. $x – 3y – 23 = 0$, $ 7x + 9y + 19 = 0$, $ 4x + 3y + 13 = 0$.

    Bài 45. Cho tam giác $ABC$, biết phương trình cạnh $AB$, phương trình đường phân giác trong $BE$, phương trình đường phân giác trong $CE$ lần lượt có phương trình $$3x – 4y – 2 = 0, x – y – 1 = 0, 11x + 3y + 10 = 0.$$ Viết phương trình hai cạnh $BC$ và $AC$.

    Hướng dẫn. $BC: 4x – 3y – 5 = 0$, $AC: 5x + 12y + 27 = 0$.

    Bài 46. Viết phương trình các cạnh của tam giác $ABC$ biết rằng $A(-3; 3)$ và phương trình các đường phân giác trong $B$ và $C$ của tam giác lần lượt là $ x – 2y + 1 = 0$, $x + y + 3 = 0$.

    Hướng dẫn. $AB: 2x + y – 3 = 0$, $AC: x – y – 3 = 0$, $BC: 4x – y + 3 = 0$.

    Bài 47. Viết phương trình các cạnh của tam giác $ABC $ biết rằng $B(2; -1)$ và nếu $3x – 4y + 27 = 0 $ và $x + 2y – 5 = 0$ lần lượt là phương trình đường cao và đường phân giác trong của tam giác kẻ từ các đỉnh khác nhau.

    (Find the equations of the sides of a triangle having $B(2; -1)$ as a vertex, if $3x – 4y + 27 = 0 $ and $x + 2y – 5 = 0$ are the respective equations of an altitude and an angle bisector drawn from diferrent vertices.)

    Hướng dẫn. $4x + 7y – 1 = 0$, $y – 3 = 0$, $4x + 3y – 5 = 0$.

    Bài 48. Viết phương trình các cạnh của tam giác $ABC$ biết rằng $A(3; – 1) $ và nếu $x – 4y +10 = 0$ và $6x + 10y – 59 = 0$ lần lượt là phương trình đường phân giác trong và đường trung tuyến của tam giác kẻ từ các đỉnh khác nhau.

    (Find the equations of the sides of a triangle having $A(3; – 1) $ as a vertex, if $x – 4y +10 = 0$ and $6x + 10y – 59 = 0$ are the respective equations of an angle bisector and a median drawn from diferrent vertices.)

    Hướng dẫn. $2x + 9y – 65 = 0$, $6x – 7y – 25 = 0$, $18x + 13y – 41 = 0.$

    Bài 49. Viết phương trình đường thẳng $\Delta$ đi qua điểm $C(-5;4)$, biết rằng $\Delta$ cắt hai đường thẳng $d_1:x + 2y + 1 = 0$ và $d_2:x+2y – 1=0$ lần lượt tại tại $A$ và $B$ sao cho độ dài đoạn thẳng $AB$ bằng 5.

    Hướng dẫn. $3x + 4y -1=0$ và $7x + 24y – 61 = 0.$

    Bài 50. Cho tam giác $ABC$ có đỉnh $A(0;4)$, trọng tâm $G\left(\frac{4}{3}; \frac{2}{3}\right)$ và trực tâm trùng với gốc toạ độ. Tìm toạ độ các đỉnh $B$ và $C$ và diện tích của tam giác $ABC$, biết rằng hoành độ điểm $B$ nhỏ hơn hoành độ điểm $C$.

    Hướng dẫn. $B(-1;-1)$, $C(5;-1)$, $S_{ABC} = 15$.

    Bài 51. Cho tam giác $ABC$ có $AB = \sqrt{2}$ và $G(1;1)$ là trọng tâm; đỉnh $C$ ở trên trục hoành và hai đỉnh $A$, $B$ ở trên đường thẳng $\Delta: x – y + 1 = 0$. Tìm toạ độ các đỉnh $A$, $B$, $C$.

    Hướng dẫn. $A(0;1)$, $B(1;2)$, $C(2;0)$ hoặc $A(1;2)$, $B(0;1)$, $C(2;0)$.

    Bài 52. Cho tam giác $ABC$ có phương trình đường cao và đường trung tuyến kẻ từ đỉnh $A$ lần lượt có phương trình $$
    x – 2y – 13 = 0 \text{ và } 13x -6y – 9 = 0.$$ Tìm toạ độ các đỉnh $B$ và $C$ biết toạ độ tâm đường tròn ngoại tiếp của tam giác $ABC$ là $I(-5; 1)$.

    Hướng dẫn. $(4;3)$ và $(2;7)$.

    Bài 53. Cho tam giác $ABC$ vuông tại $A$, có đỉnh $C(-3;1)$, đường trung trực của cạnh $BC$ có phương trình $7x + y – 5 = 0$. Tìm toạ độ nguyên của đỉnh $A$ biết diện tích của tam giác $ABC$ bằng 10.

    Đáp số. $A(-2; 4)$.

    Bài 54. Cho tam giác $ABC$ có $A(0;6)$, tâm đường tròn ngoại tiếp tam giác $ABC$ là $K(4;3)$, đường cao kẻ từ $A$ đi qua điểm $I(2;2)$ và độ dài cạnh $BC = 4\sqrt{5}$. Tìm toạ độ các đỉnh $B$ và $C$, biết rằng góc $A$ là góc tù.

    Hướng dẫn. $B(-1;3)$ và $C(7;7)$ hay ngược lại.

    Bài 55. Cho tam giác $ABC$ có phương trình đường trung tuyến và phân giác trong cùng kẻ từ đỉnh $B$ lần lượt là $$(d_1): 2x + y – 3 = 0, (d_2): x + y – 2 = 0.$$ Điểm $M$ thuộc đường thẳng $AB$, đường thẳng r ngoại tiếp tam giác $ABC$ có bán kính bằng $\sqrt{5}$. Biết đỉnh $A$ có hoành độ dương, xác định toạ độ các đỉnh của tam giác $ABC$.

    Hướng dẫn. $A(3; 1)$, $B(1;1)$, $C(1;- 3)$.

    Bài 56. Cho tam giác $ABC$ có trực tâm $H(1;-1)$, điểm $E(-1;2)$ là trung điểm của cạnh $AC$ và phương trình cạnh $BC$ là $2x -y + 1 = 0$. Xác định toạ độ các đỉnh của tam giác $ABC$.

    Hướng dẫn. $A(-3;1)$, $B(0;1)$, $C(1;3)$.

    Bài 57. Cho điểm $M(2;3)$. Viết phương trình đường thẳng $\Delta$ lần lượt cắt các trục $Ox$, $Oy$ tại $A$, $B$ sao cho tam giác $MAB$ vuông cân tại $A$.

    Hướng dẫn. $x – 3y – 3 = 0$, $5x + 3y + 15=0.$

    Bài 58. Cho điểm $M(2;1)$ và đường thẳng $(d): x – y = 0$. Viết phương trình đường thẳng $\Delta$ lần lượt cắt trục $Ox$ và $(d)$ tại $A$, $B$ sao cho tam giác $MAB$ vuông cân tại $M$.

    Hướng dẫn. $x + y – 2 = 0$, $3x + y – 12=0.$

    Bài 59. Viết phương trình của đường thẳng $\Delta$ đi qua gốc toạ độ và tạo với hai đường thẳng $(d_1): x – y + 12 = 0$ và $(d_2): 2x + y + 9 = 0$ một tam giác có diện tích là 1.5 đơn vị diện tích. (Write the equations of the line passing through the origin and forming, together with the line $(d_1): x – y + 12 = 0$ and $(d_2): 2x + y + 9 = 0$ a triangle of an equal to 1.5 square units.)

    Hướng dẫn. 

    • Gọi phương trình $\Delta$ có dạng $y = kx$.
    • Đường thẳng $\Delta$ cắt $(d_1)$ tại $A\left(\frac{12}{k-1}; \frac{12k}{k – 1}\right)$ và cắt cắt $(d_2)$ tại $B\left(\frac{-9}{k + 2}; \frac{-9k}{k + 2}\right)$; $(d_1)$ cắt $(d_2)$ tại điểm $C(-7; 5)$.
    • Diện tích tam giác $ABC$ là $S = \frac{3}{2}\left\vert\frac{(7k + 5)^2}{(k – 1)(k + 2)}\right\vert$.
    • Giải phương trình $S = \frac{3}{2}$, ta được $k = -\frac{1}{2}$ và $k = -\frac{23}{25}$.
    • Đáp số $x + 2y = 0$, $23x + 25y = 0$.

    Bài 60. Cho tam giác $ABC$ cân tại $A$, điểm $M\left(2; \frac{5}{2}\right)$ là trung điểm của cạnh $AB$, $B(1;0)$. Tìm toạ độ các đỉnh $A$ và $C$ biết rằng diện tích của tam giác $ABC$ bằng 10 (đ.v.d.t) và toạ độ các đỉnh $A$ và $C$ là các số nguyên.

    Hướng dẫn. $A(3;5)$, $C(5;0)$; hoặc $A(5; 0)$, $C(3;5)$ hoặc $A(3;5)$, $C(1;10)$ hoặc $A(1;10)$, $C(3;5)$.

    Bài 61. Cho tam giác $ABC$ có diện tích bằng 24 và phương trình các đường trung tuyến kẻ từ các đỉnh $A$, $B$, $C$ lần lượt là $$\Delta_1: x – y +2 = 0, \Delta_2: 5x – y – 2 = 0, \Delta_3: x + 3y – 10 = 0. $$ Tìm toạ độ các đỉnh của tam giác $ABC$.

    Hướng dẫn.

    • Gọi $A(x_1; x_1 + 2)$, $B(x_2; 5x_2 – 2)$. Điểm $G(1;3)$ là trọng tâm tam giác $ABC$, nên tìm được toạ độ điểm $C$ theo $x_1$ và $x_2$.
    • Tìm $x_1$, $x_2$ từ các điều kiện $C$ thuộc trung tuyến $\Delta_3$ và tam giác $ABC$ có diện tích bằng 24.
    • Đáp số $A(5;7)$, $B(0;-2)$, $C(-2;4)$ hoặc $A(-3; -1)$, $B(2; 8)$, $C(4; 2)$.

    2.6. Hình chữ nhật

    Bài 1. Cho hình chữ nhật $ ABCD $ có $ AD=2AB $ và $ A(1,5). $ Phương trình đường chéo $ BD:3x+4y-13=0. $ Tìm tọa độ các đỉnh hình chữ nhật biết điểm $ B $ có hoành độ âm.

    Hướng dẫn. Gọi véctơ pháp tuyến của $ AB $ và sử dụng $ \cos\widehat{ABD}=\frac{1}{\sqrt{5}} $. Đáp số $ B(-1,4). $

    Bài 2. Cho hình chữ nhật $ ABCD $ có phương trình đường thẳng $ AB:x-2y+1=0, $ phương trình đường thẳng $ BD:x-7y+14=0, $ đường thẳng $ AC $ đi qua $ M(2,1). $ Tìm toạ độ các đỉnh của hình chữ nhật.

    Hướng dẫn. Tìm được $ B(\frac{21}{5},\frac{13}{5}) $ và viết phương trình $ BC. $ Có $ \widehat{(AC,BD)}=\widehat{BID}=2\widehat{ABD}=2\widehat{(AB,BD)}, $ suy ra $ AC:17x-31y-3=0 $ hoặc $ AC:x+y-3=0. $

    Bài 3. Cho hình chữ nhật $ ABCD $ có cạnh $ AB:x-2y-1=0, $ đường chéo $ BD:x-7y+14=0 $ và đường chéo $ AC $ đi qua điểm $ M(2,1). $ Tìm toạ độ các đỉnh của hình chữ nhật.

    Hướng dẫn. Sử dụng $ \cos(AB,AC)=\cos(AB,BD). $ Đáp số $ B(7,3),C(6,5),A(1,0),D(0,2) $ hoặc…

    Bài 4. Trong mặt phẳng tọa độ $ Oxy $ cho hình chữ nhật $ ABCD $ có tâm $ I(\frac{1}{2},0). $ Đường thẳng $ AB $ có phương trình $ x-2y+2=0,AB=2AD $ và hoành độ điểm $ A $ âm. Tìm tọa độ các đỉnh.

    Hướng dẫn. Gọi $ H $ là hình chiếu của $ I $ lên $ AB $ thì $ AH=2IH… $ Đáp số. $A(-2,0),B(2,2),C(3,0),D(-1,-2).$

    Bài 5. Cho hình chữ nhật $ ABCD, $ có diện tích bằng 12, tâm $ I $ là giao điểm của hai đường thẳng $ d_1:x-y-3=0,d_2:x+y-6=0. $ Trung điểm của một cạnh là giao điểm của $ d_1 $ với trục $ Ox. $ Tìm toạ độ các đỉnh của hình chữ nhật.

    Hướng dẫn. Chú ý rằng $ d_1 $ song song với hai cạnh của hình chữ nhật. Đáp số $A(3,1),D(4,-1),C(7,2),B(11,4)$ hoặc $ A(4,-1),D(2,1),C(5,4),B(13,2) $.

    Bài 6. Cho hình chữ nhật $ ABCD $ có diện tích bằng $ 6 $. Phương trình đường thẳng chứa đường chéo $ BD $ là $ d:2x + y – 11 = 0 $, đường thẳng $ AB $ đi qua điểm $ M (4; 2) $, đường thẳng $ BC $ đi qua điểm $ N (8; 4) $. Xác định tọa độ các đỉnh của hình chữ nhật biết các điểm $ B,D $ đều có hoành độ lớn hơn 4.

    Hướng dẫn. Gọi $ B(b,11-2b) $ thì từ $ AB\perp BC $ tìm được $ B(5,1) $. Suy ra phương trình $ AB:x+y-6=0,AC: x-y-4=0.$ Gọi $ A(a,6-a) $ và $ C(c,c-4) $ thì tâm hình chữ nhật là $ I(\frac{a+c}{2},\frac{c-a+2}{2}) $. Vì $I\in BD $ nên $ 3c+a-20=0. $ Ta có $ AB=\sqrt{2}|a-5| $ và $ BC=\sqrt{2}|c-5| $ nên $ 2|a-5|.|c-5|=6. $ Từ đó tìm được đáp số $ A(8,-2),C(4,0),D(7,-3). $

    Bài 7. Cho hình chữ nhật $ ABCD $ có diện tích bằng 10, phương trình đường thẳng chứa cạnh $ AD $ là $ 3x – y = 0 $. Lấy điểm $ M $ đối xứng với $ D $ qua $ C $ và đường thẳng $ BM $ có phương trình $ 2x + y-10 = 0 $. Xác định tọa độ các đỉnh của hình chữ nhật biết đỉnh $ B $ có hoành độ dương.

    Hướng dẫn. Gọi $ N $ là giao điểm của $ BM $ và $ AD $ thì $ N(2,6). $ Gọi $ D(d,3d) $ và $ B(b,10-2b) $ với $ b>0. $ Vì $ A $ là trung điểm $ ND $ nên $ A(\frac{d+2}{2},\frac{3d+6}{2}) .$ Vì $ B $ là trung điểm $ MN $ nên $ M(2b-2,14-4b) $ mà $ C $ là trung điểm $ MD $ nên $ C(\frac{2b-2+d}{2},\frac{14-4b+3d}{2}). $ Mặt khác $ AB\perp AD $ nên có phương trình $ b+d=4. $ Từ diện tích bằng 10 tìm được đáp số $ A(1,3),B(4,2),C(3,-1),D(0,0) $.

    Bài 8. Cho hình chữ nhật $ ABCD $ có $ AD=2AB. $ Gọi $ M,N $ là trung điểm $ AD,BC. $ Lấy $ K $ thuộc $ MN $ sao cho $ N $ là trung điểm $ MK. $ Tìm tọa độ $ A,B,C,D $ biết $ K(-5,1),AC:2x+y-3=0 $ và điểm $ A $ có tung độ dương.

    Hướng dẫn. Gọi $ I $ là tâm hình chữ nhật thì $ \cos \widehat{MIA}=\frac{1}{\sqrt{5}.} $ Từ đó tìm được phương trình $ MK$ suy ra tọa độ $ I$ suy ra tọa độ $ M$ suy ra…

    Bài 9. Cho hình chữ nhật $ ABCD $ có đỉnh $ C $ thuộc đường thẳng $d:x+3y+7=0$ và $ A(1,5). $ Lấy $ M $ thuộc tia đối của $ CD $ sao cho $ MC=2BC. $ Gọi $ N $ là hình chiếu của $ B $ lên $ MD. $ Xác định tọa độ $ B,C $ biết $ N(-\frac{5}{2},\frac{1}{2}). $

    Hướng dẫn. Gọi $ C(-3c-7,c) $ thì tâm hình chữ nhật là $ I\left(\frac{-3c-6}{2},\frac{c+5}{2}\right).$ Tam giác $ DNB $ vuông tại $ N $ nên $ IN=IB=ID=IA $. Từ đó tìm được $ C(2,-3). $ Gọi $ B(m,n) $ thì từ $ AB\perp BC $ được phương trình $$ (m-1)(m-2)+(n-5)(n+3)=0 $$ Từ $ \overrightarrow{CM}=2\overrightarrow{BC} $ suy ra $ M(6-2m,-9-2n)$. Mà $ MN\perp BN $ nên được phương trình $$ \left(m+\frac{5}{2}\right)\left(\frac{17}{2}-2m\right)+\left(n-\frac{1}{2} \right)\left(-\frac{19}{2}-2n\right)=0 $$ Giải hệ tìm được $ m,n… $

    Bài 10. Cho hình chữ nhật $ABCD$ có phân giác trong góc $ \widehat{ABC} $ đi qua trung điểm $ M $ của $ AD. $ Phương trình đường thẳng $ BM:x-y+2=0. $ Điểm $ D $ thuộc đường thẳng $ d:x+y-9=0 $ và $ E(-1,2) $ là điểm thuộc đường thẳng $ AB. $ Tìm tọa độ các đỉnh hình chữ nhật biết điểm $ B $ có hoành độ âm.

    Hướng dẫn. Chỉ ra tam giác $ ABM $ vuông cân tại $ A $. Gọi véctơ pháp tuyến của $ AB $ là $ \vec{n}(a,b) $ và tìm được $ ab=0 $. Từ đó tìm được $ B(-1,1). $ Gọi $ A(-1,m) $ và $ D(n,9-n) $ thì trung điểm của $ AD $ là $ M(\frac{n-1}{2},\frac{9-n+m}{2}) $ thuộc $ BM. $ Suy ra phương trình $ 2n-m-6=0. $ Kết hợp với $ \overrightarrow{AD}\perp \overrightarrow{AB} $ được hệ. Đáp số $ A(-1,4),C(5,1),D(5,4). $

    Bài 11. Cho hình chữ nhật $ABCD$ biết phương trình cạnh $BC$ là $x + 2y – 4 = 0$, phương trình đường chéo $BD$ là $3x + y – 7 = 0$, đường chéo $AC$ đi qua điểm $M(-5;2)$. Tìm toạ độ các đỉnh của hình chữ nhật $ABCD$.

    Hướng dẫn. $A(4;5)$, $B(2;1)$, $C(-2; 3)$, $D(0; 7)$.

    Bài 12. Cho hình chữ nhật $ABCD$ có diện tích bằng 12, tâm $I$ là giao điểm của hai đường thẳng $$d_1: x – y – 3 = 0, d_2: x + y – 6 = 0.$$ Trung điểm của một cạnh là giao điểm của đường thẳng $d_1$ với trục $Ox$. Tìm toạ độ các đỉnh của hình chữ nhật $ABCD$.

    Hướng dẫn. $(2;1)$, $(5;4)$, $(7;2)$, $(4;-1)$.

    Bài 13. Cho hình chữ nhật $ABCD$ có diện tích bằng 12, tâm $I\left(\frac{9}{2}; \frac{3}{2}\right)$ và trung điểm của cạnh $AD$ là $M(3;0)$. Xác định toạ độ các đỉnh của hình chữ nhật $ABCD$.

    Hướng dẫn. $(2;1)$, $(5;4)$, $(7;2)$, $(4;-1)$.

    Bài 14. Trong mặt phẳng với hệ toạ độ $Oxy$, cho hình chữ nhật $ABCD$ có điểm $I(6;2)$ là giao điểm của hai đường chéo $AC$ và $BD$. Điểm $M(1;5)$ thuộc đường thẳng $AB$ và trung điểm $E$ của cạnh $CD$ thuộc đường thẳng $\Delta:x+y-5=0$. Viết phương trình đường thẳng $AB$.

    Hướng dẫn. $AB:y-5=0$ hoặc $AB: x – 4y + 19 = 0.$

    2.7. Hình vuông

    Bài 1. [Đề thi khối A năm 2005] Cho hai đường thẳng $ d_1:x-y=0, d_2:2x+y-1=0. $ Tìm tọa độ các đỉnh hình vuông $ ABCD $ biết rằng đỉnh $ A $ thuộc $ d_1 $ đỉnh $ C $ thuộc $ d_2 $và các đỉnh $ B, D $ thuộc trục hoành.

    Hướng dẫn. Nhận xét $ BD $ trùng với $ Ox. $ Gọi $ A(t,t)\in d_1. $ Vì $ A,C $ đối xứng nhau qua $ BD $ nên $ C(t,-t). $ Mà $ C\in d_2 $ nên tìm được $ C(1,-1) $ và $ A(1,1). $ Gọi trung điểm của $ AC $ là $ I(1,0). $ Vì $ I $ là tâm hình vuông nên $ IB=ID=IA=1. $ Đáp số $ B(0,0),D(2,0) $ hoặc $ D(0,0),B(2,0). $

    Bài 2. Cho hình vuông có đỉnh $ (-4,5) $ và một đường chéo có phương trình $ 7x-y+8=0. $ Viết phương trình các cạnh hình vuông.

    Hướng dẫn. $3x-4y+32=0,4x+3y+1=0…$

    Bài 3. [Đề thi thử trường Cổ Loa năm 2015] Cho hình vuông $ ABCD $ có $ M $ là trung điểm $ BC, N $ thuộc đoạn $ AC $ sao cho $ AC=4AN. $ Đường thẳng $ MN $ có phương trình $ 3x-y-4=0 $ và $ D(5,1). $ Tìm tọa độ điểm $ B $ biết điểm $ M $ có tung độ dương.

    Hướng dẫn. Kẻ $ NH\perp BC, NK\perp DC. $ Chứng minh $ \Delta DNK=\Delta MNH $ từ đó suy ra $ \Delta DNM $ vuông cân tại $ N. $ Suy ra phương trình $ DN:x+3y-8=0. $ Do đó $ N(2,2). $ Ta có $ M\in MN $ nên $ M(m,3m-4) $ mà $ DN=MN $ nên tìm được $ M(3,5). $ Gọi $ P=MN\cap AD $ thì $ \overrightarrow{MN}=3\overrightarrow{NP} $ suy ra $ P(\frac{5}{3},1). $ Chứng minh $ \overrightarrow{DP}=\frac{5}{6}\overrightarrow{DA}. $ Suy ra tọa độ $ B(1,5).$

    Bài 4. [Đề thi thử THPT Can Lộc 2014] Trong mặt phẳng tọa độ $ Oxy, $ cho hình vuông $ ABCD. $ Trên các cạnh $ AD, AB $ lấy hai điểm $ E $ và $ F $ sao cho $ AE = AF. $ Gọi $ H $ là hình chiếu vuông góc của $ A $ lên $ BE. $ Tìm tọa độ của $ C $ biết $ C $ thuộc đường thẳng $ d: x -2y + 1 = 0 $ và tọa độ $ F(2, 0), H(1, -1). $

    Hướng dẫn. Gọi $ M $ là giao điểm của $ AH $ và $ CD. $ Ta có $ \widehat{ABE}=\widehat{DAM} $ nên hai tam giác $ ABE $ và $ ADM $ bằng nhau. Do đó $ DM = AE = AF, $ suy ra $ BCMF $ là hình chữ nhật. Gọi $ I $ là tâm hình chữ nhật $ BCMF. $ Trong tam giác vuông $ MHB $ ta có $ BM=2HM $ mà $ BM=CF $ nên tam giác $ CHF $ vuông tại $ H. $ Đáp số $C(-\frac{1}{3},\frac{1}{3}).$

    Bài 5. Cho hình vuông $ ABCD $ có tâm $ I $, điểm $ K (0; 2) $thuộc đoạn $ IA $. Giả sử $ M $ và $ N $ lần lượt là trung điểm của cạnh $ AB,CD $ và cùng nằm trên đường thẳng $ d:x – 1 = 0 $. Điểm $ Q $ là giao của $ KM $ với $ BC $. Xác định tọa độ các đỉnh của hình vuông $ ABCD $ biết điểm $ H (4; 8) $ thuộc đường thẳng $ NQ $.

    Hướng dẫn. Gọi véctơ pháp tuyến của $ AC $ là $ \vec{n}(a,b) $ thì từ $ \widehat{AIM}=45^\circ $ tìm được $ a=\pm b. $ Sau đó xét hai trường hợp.

    Bài 6. Cho hình vuông $ABCD$ có $M$ là trung điểm cạnh $BC$, đường thẳng $DM$ có phương trình $x – y – 2 = 0$, điểm $C(3;-3)$, điểm $A$ thuộc đường thẳng $(d): 3x + y – 2 = 0$. Tìm toạ độ các đỉnh $A$, $B$, $D$.

    Hướng dẫn. Đáp số $A(-1; 5)$, $B(-3;-1)$, $D(5;3)$.

    2.8. Tứ giác khác

    Bài 1. Cho hình thang cân $ ABCD $ có $ CD = 2AB $, phương trình hai đường chéo $ AC $ và $ BD $ lần lượt là $ x + y – 4 = 0$ và $ x – y – 2 = 0 $. Biết rằng tọa độ hai điểm $ A $ và $ B $ đều dương và diện tích hình thang bằng 36. Tìm tọa độ các đỉnh hình thang.

    Hướng dẫn. Từ diện tích hình thang bằng 36 tìm được $AC=BD=6\sqrt{2}. $ Hai tam giác $ AIB $ và $ CID $ đồng dạng nên tìm được $ IA=IB=\frac{1}{3}AC=2\sqrt{2}. $ Lấy $ A(a,4-a) $ và $ B(b,b-2) $ lập hai phương trình tìm được $ A(1,3) $ và $ B(5,3). $ Từ đó tìm được $ C(7,-3) $ và $ D(-1,-3). $

    Bài 2. Cho hình thang cân $ ABCD $ có diện tích bằng $ \frac{45}{2}, $ đáy lớn $ CD $ có phương trình $ x-3y-3=0. $ Biết hai đường chéo $ AC,BD $ vuông góc với nhau và cắt nhau tại $ I(2,3). $ Viết phương trình đường thẳng $ BC $ biết điểm $ C $ có hoành độ dương.

    Hướng dẫn. Từ tam giác $ ICD $ vuông cân tại $ I $ tìm được $ IC=\sqrt{20}. $ Gọi $ C(3c+3,c) $ thì $ IC^2=10 $ nên $ C(6,1) $. Suy ra phương trình $ BD:2x-y-1=0 $ và tọa độ $ D(0,-1) $. Đặt $ IA+IB=x $ và biểu diễn diện tích hình thang theo $ x $ là $ \frac{1}{2}x^2+2x\sqrt{5}+10=\frac{45}{2} $. Từ đó tìm được $ x=\sqrt{5}. $ Đáp số $ BC:4x+3y-27=0. $

    Bài 3. Cho hình thang $ ABCD $ có diện tích bằng $ \frac{45}{8}. $ Phương trình hai cạnh đáy là $ AB:x-3y+1=0 $ và $ CD:2x-6y+17=0 $. Hai cạnh $ AD,BC $ cắt nhau tại $ K(2,6) $, hai đường chéo cắt nhau tại $ I(1,\frac{7}{3}) $. Xác định tọa độ các đỉnh của hình thang.

    Hướng dẫn. Từ diện tích hình thang bằng $ \frac{45}{8} $ suy ra $ AB+CD=\frac{3\sqrt{10}}{2}. $ Từ các tam giác đồng dạng, suy ra $ AB=2CD=\sqrt{10}. $ Suy ra $ CD $ là đường trung bình của tam giác $ KAB. $ Gọi giao điểm của $ KI $ và $ AB,CD $ là $ M,N $ thì $ M,N $ là trung điểm $ AB,CD. $ Tìm được $ M(\frac{1}{2},\frac{1}{2}) $ và đáp số $ A(2,1),B(-1,0),C(2,\frac{7}{2}),D(\frac{1}{2},3). $

    Bài 4. Cho hình thoi $ ABCD $ có tâm $ I (3;3) $ và $ AC= 2BD $. Điểm $ M(2,\frac{4}{3}) $ thuộc đường thẳng $ AB $, điểm $ N(3,\frac{13}{3}) $ thuộc đường thẳng $ CD $. Viết phương trình đường chéo $ BD $ biết điểm $ B $ có hoành độ nhỏ hơn 3.

    Hướng dẫn. Lấy $ P $ đối xứng với $ N $ qua tâm $ I $ thì $ P\in AB. $ Đáp số $ BD:7x-y-18=0. $

    Bài 5. Cho hình thoi $ ABCD $ có $ BD:x-y=0. $ Đường thẳng $ AB $ đi qua $ P(1,\sqrt{3}). $ Đường thẳng $ CD $ đi qua $ Q(-2,-2\sqrt{3}). $ Tìm tọa độ các đỉnh hình thoi biết $ AB=AC $ và $ B $ có hoành độ lớn hơn 1.

    Hướng dẫn. Chỉ ra tam giác $ABC$ đều, do đó góc giữa $ AB $ và $ BD $ là $ 30^\circ. $ Gọi véctơ pháp tuyến của $ AB $ và tìm được $ B(2,2). $

    Bài 6. Cho hình thang $ ABCD $ vuông ở $ A $ và $ B $. Có $ AD=\frac{1}{2} AB=\frac{1}{3} BC $. Gọi hình chiếu
    vuông góc các trung điểm của $ AB $ và $ CD $ xuống đường thẳng $ AC $ là $ H $ và $ N $. Biết $HN=\frac{6}{\sqrt{13}}, C(2; 4)$. Đỉnh $ A $ thuộc đường thẳng $ 5x+4y-4=0 $, đường thẳng $ 8x-5y- 11=0 $ đi qua đỉnh $ B $. Xác định tọa độ các đỉnh $ A, B, D $.

    Hướng dẫn. Đặt $ AD=a $. Gọi $ I,J $ là trung điểm của $ AB,CD $ và hình chiếu vuông góc của $ D $ xuống $ BC $ là $ E $. Ta có $$ \overrightarrow{AB}.\overrightarrow{BD}=-4a^2, \overrightarrow{BC}.\overrightarrow{BD}=3a^2$$
    và \[ \overrightarrow{AC}.\overrightarrow{BD}=(\overrightarrow{AB}+\overrightarrow{BC})\overrightarrow{BD}=-a^2,\overrightarrow{AC}.\overrightarrow{IJ}=\overrightarrow{AC}.\frac{\overrightarrow{AC}+\overrightarrow{BD}}{2}=6a^2 \] Mặt khác $ \overrightarrow{AC}.\overrightarrow{IJ}=\overline{AC}.\overline{HN}=a\sqrt{13}HN=\frac{6a}{\sqrt{13}} $. Suy ra $ a=1, $ và $ BC=3,AC=\sqrt{13}. $ Từ đó tìm được đáp số $ A(0,1) $ hoặc $ A(-\frac{56}{41},\frac{111}{41}). $

    Bài 7. Viết phương trình các cạnh của hình thang cân $ABCD$ biết rằng trung điểm của các cạnh đáy $AB$ và $CD$ lần lượt là $I(2;2)$ và $J(-4;6)$; hai điểm $M(4;-5)$ và $N(-5;7)$ lần lượt thuộc hai cạnh bên $AD$ và $BC$.

    Hướng dẫn. $AB: 3x – 2y – 2 = 0$, $CD: 3x – 2y + 24 = 0$, $BC: 4x + 185y -1025 = 0$, $AD:150x + 121y + 5 = 0$

    Bài 8. Cho hình bình hành $ABCD$ có $M$ là trung điểm của cạnh $BC$, $N$ là trung điểm của đoạn $MD$, $P$ là giao điểm của hai đường thẳng $AN$ và $CD$. Tìm toạ độ các đỉnh $C$ và $D$ biết rằng $A(1;2)$, $B(4;-1)$, $P(2;0)$.

    Hướng dẫn. $D(0;2)$; $C(3;-1)$.

    Bài 9. Cho hình thoi $MNPQ$ với các cạnh $MN$, $MQ$ lần lượt có phương trình $$x + 2y – 4 = 0 \text{ và } 2x + y – 2 = 0.
    $$ Trung điểm một cạnh của hình thoi là $I(2;1)$. Viết phương trình cạnh $PQ$ của hình thoi.

    Hướng dẫn. $x + 2y +2=0$ hoặc $x + 2y -10 = 0.$

    Bài 10. Cho hình thoi $ABCD$, cạnh $BC$ có phương trình $x + 3y – 8 = 0$, đường chéo $AC$ có phương trình $2x + y + 4 = 0$ và điểm $M(-9; -1)$ thuộc đường thẳng $AD$. Viết phương trình các cạnh còn lại của hình thoi.

    Hướng dẫn. $AD:x+3y + 12 = 0$, $CD: 3x – y + 16 = 0$ và $AB: 3x -y – 4 = 0.$

    Bài 11. Trong mặt phẳng với hệ toạ độ $Oxy$, cho hình thoi $ABCD$ có hai cạnh $AB$, $CD$ lần lượt nằm trên hai đường thẳng
    $$(d_1): x – 2y + 5 = 0, (d_2): x – 2y + 1 = 0.$$ Viết phương trình các đường thẳng $AD$ và $BC$, biết điểm $M(-3; 3)$ thuộc đường thẳng $AD$ và điểm $N(-1;4)$ thuộc đường thẳng $BC$.

    Hướng dẫn. $BC: x + 2y – 7 = 0$, $AD:x + 2y – 3 = 0$ hoặc $BC: 11x – 2y +19 = 0$, $AD:11x – 2y + 39 = 0$.

    Bài 12. Cho hình thoi $ABCD$ có $A(2;3)$, $\widehat{ABC} = 60^\circ$, phương trình đường thẳng $BD$ là $x – 2y + 2 = 0$. Xác định toạ độ các đỉnh $B$, $C$, $D$.

    Bài 13. Viết phương trình các cạnh của hình thoi $ABCD$ biết rằng $A(-3;1)$, $B(5;7)$ và diện tích của hình thoi bằng $ 25 $.

    3. Phương trình đường tròn

    • Đường tròn $ (C) $ tâm $ I(a;b), $ bán kính $ R $ có phương trình \[ (x-a)^2+(y-b)^2=R^2 \]
    • Khai triển ra ta được dạng sau \[ x^2+y^2-2ax-2by+c=0 \]
    • Đường thẳng $\Delta$ tiếp xúc với đường tròn $ (I,R) $ khi và chỉ khi $$ d(I,\Delta)=R $$ hoặc $ \Delta $ vuông góc với bán kính tại tiếp điểm.
    • Đường thẳng $\Delta$ cắt đường tròn $ (I,R) $ theo dây cung\index{độ dài dây cung} $ AB, $ gọi $ H $ là trung điểm $AB$ thì $ IH\perp AB $ và $ R^2=IH^2+AH^2. $
    • Chỉ có bài toán lập phương trình đường tròn đi qua ba điểm thì gọi phương trình đường tròn rồi giải hệ ba ẩn, các bài toán còn lại ta đi tìm tọa độ tâm và bán kính.

    3.1. Viết phương trình đường tròn

    Bài 1. Cho hai đường thẳng $ \Delta:x+3y+8=0, \Delta’:3x-4y+10=0 $ và điểm $ A (-2,1). $ Viết phương trình đường tròn có tâm thuộc đường thẳng $ \Delta $ đi qua điểm $ A $ và tiếp xúc với đường thẳng $ \Delta’. $

    Hướng dẫn. Gọi tọa độ tâm $ I $ của đường tròn $ (C). $ Đường thẳng $\Delta’$ tiếp xúc $(C) \Leftrightarrow d(I,\Delta’)=IA.$

    Bài 2. [Đại học Thái nguyên 1998] Cho $ A(4,0), B(0,4) $. Viết phương trình đường tròn nội tiếp và ngoại tiếp tam giác $ AOB $.

    Bài 3. Trong mặt phẳng toạ độ $ Oxy $ cho tam giác $ ABC, $ có điểm $ A(2,3) $ trọng tâm $ G(2,0). $ Hai đỉnh $ B $ và $ C $ lần lượt nằm trên hai đường thẳng $ d_1:x+y+5=0,d_2:x+2y-7=0. $ Viết phương trình đường tròn có tâm $ C $ và tiếp xúc với đường thẳng $ BG. $

    Hướng dẫn. Tìm được $ B(-1,-4),C(5,1), BG:4x-3y-8=0. $ Suy ra $ R=d(C,BG). $ Đáp số $ (x-5)^2+(y-1)^2=\frac{169}{25}. $

    Bài 4. [ĐHQGHN 1996] Cho đường tròn $(C):{{(x-1)}^{2}}+{{(y-2)}^{2}}=9$. Viết phương trình đường thẳng đi qua $ M(2;1) $ và cắt đường tròn $ (C) $ tại hai điểm $ A; B $ phân biệt sao cho $ M $ là trung điểm $ AB $.

    Bài 5. Viết phương trình đường tròn đi qua hai điểm $ A(2,5),B(4,1) $ và tiếp xúc với đường thẳng có phương trình $\Delta: 3x-y+9=0. $

    Hướng dẫn. Gọi tọa độ tâm $ I(a,b). $ Từ $ IA=IB $ và $ IA=d(I,\Delta) $ lập được hai phương trình…

    Bài 6. Cho đường tròn $(C):x^2+y^2-2x+4y+2=0.$ Viết phương trình đường tròn $ (C’) $ có tâm $ M(5,1) $ và cắt $(C)$ tại $ A,B $ sao cho $ AB=\sqrt{3}. $

    Hướng dẫn. Gọi $ H $ là giao điểm của $ AB $ và $ IM… $ Đáp số $ (x-5)^2+(y-1)^2=13. $

    Bài 7. Cho tam giác $ ABC $ có diện tích bằng $\frac{3}{2}, A(2; -3), B(3;-2)$, trọng tâm của $ ABC $ nằm trên đường thẳng $ d: 3x-y-8 = 0 $. Viết phương trình đường tròn đi qua ba điểm $ A, B, C? $

    Hướng dẫn. ${x^2} + {y^2} – \frac{{11}}{3}x + \frac{{11}}{3}y + \frac{{16}}{3} = 0,{x^2} + {y^2} – \frac{{91}}{3}x + \frac{{91}}{3}y + \frac{{416}}{3} = 0$

    Bài 8. Trong mặt phẳng tọa độ $ Oxy, $ cho đường tròn $ (C) : x^2 + y^2 + 2x -4y-20 = 0 $ và điểm $ A(5,-6). $ Từ $ A $ vẽ các tiếp tuyến $ AB, AC $ với đường tròn $ (C) $ với $ B, C $ là các tiếp điểm. Viết phương trình đường tròn nội tiếp tam giác $ ABC. $

    Bài 9. Cho tam giác $ ABC $ vuông tại $ A $ với $ B(-3,0),C(3,0). $ Biết tâm $ I $ của đường tròn nội tiếp $ \Delta ABC $ thuộc đường thẳng $ d:y = x. $ Viết phương trình đường tròn nội tiếp tam giác $ ABC $ biết $ I $ có tung độ dương.

    3.2. Phương trình tiếp tuyến của đường tròn

    Bài 1. Trong mặt phẳng $ Oxy $ cho $ A( 2;-1), B( -2;2) $. Viết phương trình đường tròn đường kính $ AB. $ Viết phương trình tiếp tuyến với đường tròn tại $ A. $

    Hướng dẫn. $ x^2 + {{(y-\frac{1}{2})}^{2}}=\frac{25}{4},-4x +3y + 11 = 0$

    Bài 2. Viết phương trình tiếp tuyến của đường tròn $ (C): x^2 +y^2 -6x +2y = 0 $ vuông góc với đường thẳng $ 3x – y +6 = 0 $.

    Hướng dẫn.$ x +3y +10 = 0, x +3y -10 = 0 $

    Bài 3. [ĐHTCKT 1997] Cho đường tròn $(C):{{(x-1)}^{2}}+{{(y-3)}^{2}}=4$ và điểm $ M(2;4) $.

    • Viết phương trình đường thẳng đi qua $ M $ và cắt $ (C) $ tại hai điểm phân biệt $ A,B $ sao cho $ M $ là trung điểm $ AB $.
    • Viết phương trình các tiếp tuyến của đường tròn đó biết tiếp tuyến có hệ số góc $ k = – 1 $.

    Bài 4. Viết phương trình tiếp tuyến với đường tròn $ ( C): x^2 +y^2 – 6x +2y +6 = 0 $ biết tiếp tuyến đi qua điểm $ A(1;3). $
    Hướng dẫn.$ x-1=0,3x +4y -15 = 0 $

    Bài 5. [ĐHNT 1997] Cho đường tròn $(C):{{x}^{2}}+{{y}^{2}}+2x-4y-4=0$ và điểm $ A(3;5) $.

    • Hãy viết phương trình các tiếp tuyến của đường tròn kẻ từ $ A $.
    • Giả sử các tiếp tuyến tiếp xúc với $ (C) $ tại $ M $ và $ N $. Hãy tính độ dài $ MN $.

    3.3. Các bài toán liên quan đến đường tròn

    Bài 1. Trong mặt phẳng với hệ toạ độ $ Oxy, $ cho đường tròn $ (C):x^2+y^2+2x-8y-8=0. $ Viết phương trình đường thẳng song song với đường thẳng $ d:3x+y-2 =0 $ và cắt đường tròn theo một dây cung có độ dài bằng 6.

    Hướng dẫn. $ 3x+y+19=0,3x+y-21=0. $

    Bài 2. Cho điểm $ M(6,2) $ và đường tròn $ (C) : (x-1)^2 + (y-2)^2 = 5. $ Lập phương trình đường thẳng $ d $ đi qua $ M $ và cắt đường tròn $ (C) $ tại hai điểm $ A, B $ sao cho $ AB = \sqrt{10}. $

    Hướng dẫn. Gọi $ H $ là hình chiếu của $ I $ lên $ AB $ thì $ IH^2=IA^2-AH^2=\frac{5}{2}. $ Giả sử véctơ pháp tuyến của $ d $ là $ \vec{n}(a,b) $ thì phương trình đường thẳng $ d$ là $ a(x-6)+b(y-2)=0. $ Từ $ d(I,d)=IH $ tìm được $ b=\pm 3a. $ Đáp số $x-3y=0, x+3y-12=0.$

    Bài 3. Trong mặt phẳng toạ độ $ Oxy, $ cho điểm $ K(3,2) $ và đường tròn $ (C):x^2+y^2-2y-4y+1=0 $ có tâm là $ I. $ Tìm tọa độ điểm $ M\in(C) $ sao cho $ \widehat{IMK} = 60^\circ. $

    Hướng dẫn. $ (C) $ có tâm $ I(1,2) $ và bán kính $ R=2. $ Có $ IK=2 $ nên tam giác $ IMK $ cân tại $ I. $ Do đó $ \widehat{IMK} = 60^\circ \Leftrightarrow \Delta IMK$ đều. Giả sử $ M(x_0,y_0) \in (C) $ thì $ (x_0-1)^2+(y_0-2)^2=4 $ và $ KM=2 \Leftrightarrow (x_0-3)^2+(y_0-2)^2=4. $ Từ đó tìm được $M(2,2+\sqrt{3}), M(2,2-\sqrt{3}).$

    Bài 4. Trong mặt phẳng tọa độ $ Oxy, $ cho tam giác $ ABC $ cân tại $ A $ nội tiếp đường tròn $ (C):x^2+y^2+2x-4y + 1 = 0. $ Tìm tọa độ các đỉnh $ A, B, C $ biết điểm $ M(0, 1) $ là trung điểm cạnh $ AB $ và $ A $ có hoành độ dương.

    Hướng dẫn. Có $ IM\perp AB $ nên viết được $ AB:x-y+1=0. $ Giả sử $ A(a,a+1) $ thì $ IA=2 $ nên tìm được  $A(1,2),B(-1,0),C(-1,4).$

    Bài 5. [Đề thi thử ĐH Vinh 2014] Cho tam giác $ ABC $ có $ A(3,3) $ và tâm đường tròn ngoại tiếp tam giác là $ I(2,1). $ Phân giác trong của góc $ \widehat{BAC} $ là $ x-y=0. $ Tìm tọa độ điểm $ B,C $ biết $ BC=\frac{8}{\sqrt{5}} $ và tam giác $ ABC $ nhọn.

    Hướng dẫn.

    • $ AD $ là phân giác trong nên $ AD $ cắt đường tròn tại $ E $ là điểm chính giữa cung $ BC \Rightarrow IE\perp BC. $
    • $ E\in AD $ và $ IE=IA=R $ nên tìm được $ E(0,0) \Rightarrow BC:2x+y+m=0.$
    • $ d(I,BC)=IH=\sqrt{IB^2-BH^2} $ từ đó tìm được $ m=-2 $ hoặc $ m=-8 $ (loại vì tam giác $ ABC $ nhọn nên $ I,A $ cùng phía so với $ BC$).
    • Đáp số. $ (0,2) $ và $ (\frac{8}{5},-\frac{6}{5}). $

    Bài 6. Trong mặt phẳng $ Oxy $ cho đường tròn $ (C) : x^2 + y^2 + 2x – 4y – 8 = 0 $ và đường thẳng $d: x-5y-2 = 0. $ Xác định tọa độ giao điểm $ A, B $ của đường tròn $ (C) $ và đường thẳng $ d $ (cho biết điểm $ A $ có hoành độ dương). Tìm tọa độ điểm $ C $ thuộc đường tròn $ (C) $ sao cho tam giác $ ABC $ vuông ở $ B. $

    Bài 7. [Đề thi thử ĐH Vinh K.A] Trong mặt phẳng với hệ tọa độ $ Oxy, $ cho đường tròn $ (C):(x-2)^2+(y-1)^2=5 $ và đường thẳng $ d:x-3y-9=0. $ Từ điểm $ M $ thuộc $ d $ kẻ hai đường thẳng tiếp xúc với $ (C) $ lần lượt tại $ A $ và $ B. $ Tìm tọa độ điểm $ M $ sao cho độ dài $ AB $ nhỏ nhất.

    Hướng dẫn.

    • Đường tròn $(C)$ có tâm $ I(2,1) $ và bán kính $ R=\sqrt{5}. $ Vì $ d(I,d)>R $ nên $ d $ không cắt $(C)$.
    • Giả sử $ (3m+9,m) \in d.$ Từ tính chất tiếp tuyến ta có $ MI\perp AB $ tại trung điểm $ H $ của $ AB. $ Tính được $ AH^2=R^2-\frac{R^4}{IM^2}. $ Từ đó có $ AB $ nhỏ nhất $ \Leftrightarrow IM $ nhỏ nhất khi $ m=-2. $
    • Đáp số $ M(3,-2). $

    Bài 8. [Đề thi thử Chuyên Hà Tĩnh 2014] Cho hai đường tròn: $ (C): x^2 + y^2 – 4x – 4y +4 = 0 $ và $ (C’): x^2 + y^2 – 16x +8y+ 28 = 0. $ Viết phương trình đường thẳng qua $ A(4,2) $ cắt các đường tròn trên theo các dây cung có độ dài bằng nhau.

    Hướng dẫn. $ A(4,2), B(2,0) $ là các giao điểm của $ (C) $ và $ (C’). $ Có đường thẳng qua $ A, B $ có phương trình: $ x-y-2=0 $ là một trường hợp cần tìm. Gọi $ K $ là trung điểm $ II’ $ thì đường thẳng qua $ A $ và vuông góc với $ KA $ là một trường hợp nữa thỏa mãn yêu cầu. Đáp số $x-y-2=0, x-3y+2=0.$

    Bài 9. [Đề thi khối A năm 2010] Trong mặt phẳng với hệ toạ độ $Oxy$, cho hai đường thẳng $d_1:\sqrt{3}x + y = 0$ và $d_2 :\sqrt{3}x – y = 0$. Gọi $(T)$ là đường tròn tiếp xúc với $d_1$ tại $A$, cắt $d_2$ tại hai điểm $B$ và $C$ sao cho tam giác $ABC$ vuông tại $B$. Viết phương trình của $(T)$, biết tam giác $ABC$ có diện tích bằng $\frac{\sqrt{3}}{2}$ và điểm $A$ có hoành độ dương.

    Hướng dẫn. $\left(x + \frac{1}{2\sqrt{3}}\right)^2 + \left(y + \frac{3}{2}\right)^2 = 1$.

    Bài 10. Cho đường tròn $\mathcal{(C)}: (x – 4)^2 + y^2 = 25$ và điểm $M(1;-1)$. Viết phương trình đường thẳng $\Delta$ đi qua điểm $M$ và cắt đường thẳng r $\mathcal{(C)}$ tại hai điểm $A$, $B$ sao cho $MA = 3MB$.

    Hướng dẫn. $2x + y + 3 = 0,x + 2y + 1 = 0$.

    Bài 11. Cho hai đường tròn $$ \mathcal{(C)}: (x – 1)^2 + (y + 2)^2 = 5 \text{ và } \mathcal{(C’)}: (x + 1)^2 + (y + 3)^2 = 9. $$ Viết phương trình đường thẳng $\Delta$ tiếp xúc với $\mathcal{(C)}$ và cắt $\mathcal{(C’)}$ tại hai điểm $A$, $B$ sao cho $AB = 4$.

    Hướng dẫn. $x – 2y = 0$, $x – 2y – 10 = 0$ hoặc $x + y – 2 = 0$, $x + 7y – 6 = 0$.

    Bài 12. Cho hai đường tròn \begin{equation*}
    \mathcal{(C)}: (x – 1)^2 + y^2 = \frac{1}{2} \text{ và } \mathcal{(C’)}: (x – 2)^2 + (y – 2)^2 = 4.
    \end{equation*} Viết phương trình đường thẳng $\Delta$ tiếp xúc với $\mathcal{(C)}$ và cắt $\mathcal{(C’)}$ tại hai điểm $A$, $B$ sao cho $AB = 2\sqrt{2}$.

    Hướng dẫn. $x – y – 2 = 0$, $7x – y – 2 = 0$.

    Bài 13. Cho tam giác $ABC$ nội tiếp trong đường tròn \begin{equation*}
    \mathcal{(C)}: x^2 + y^2 -4x -2y – 8 = 0. \end{equation*} Đỉnh $A$ thuộc tia $Oy$, đường cao vẽ từ $C$ nằm trên đường thẳng $(d): x + 5y = 0$. Tìm toạ độ các đỉnh $A$, $B$, $C$ biết rằng đỉnh $C$ có hoành độ là một số nguyên.

    Hướng dẫn. $A(0;4)$, $B(-1;-1)$, $C(5;-1)$

    Bài 14. Cho đường tròn $\mathcal{(C)}: x^2 + y^2 -4x +2y – 15 = 0$. Gọi $I$ là tâm của $\mathcal{(C)}$. Đường thẳng $\Delta$ đi qua điểm $M(1;-3)$ cắt $\mathcal{(C)}$ tại hai điểm $A$, $B$. Viết phương trình đường thẳng $\Delta$, biết tam giác $IAB$ có diện tích bằng 8 và cạnh $AB$ có độ dài lớn nhất.

    Hướng dẫn. $y + 3 = 0$, $4x + 3y + 5 = 0$

    Bài 15. Cho đường tròn $\mathcal{(C)}: x^2 + y^2 – 2x – 6y + 6 = 0$ và điểm $M(-3;1)$. Gọi $A$ và $B$ là các tiếp điểm của các tiếp tuyến kẻ từ $M$ đến $\mathcal{(C)}$. Tìm toạ độ hình chiếu vuông góc $H$ của $M$ lên đường thẳng $AB$.

    Hướng dẫn. $\left(\frac{1}{5}; \frac{13}{5}\right)$

    Bài 16. [Đề dự bị 2, B, 2008] Trong mặt phẳng với hệ trục toạ độ $Oxy$, cho hai điểm $A(3;0)$ và $B(0;4)$. Chứng minh rằng đường tròn nội tiếp tam giác $OAB$ tiếp xúc với đường tròn đi qua trung điểm của các cạnh tam giác $OAB$.

    Bài 17. Cho đường tròn $\mathcal{(C)}: x^2 + y^2 + 2x – 10y + 16 = 0$ và điểm $M(-2;3)$. Tìm toạ độ hai điểm $A$, $B$ thuộc $\mathcal{(C)}$ sao cho đường thẳng $AB$ đi qua điểm $M$ và đoạn thẳng $AB$ ngắn nhất.

    Hướng dẫn. $(-4;4)$ và $(0;2)$

    Bài 18. [B2006] Cho đường thẳng r $(C):x^2+y^2-2x-6y+6=0$ và điểm $M(-3;1)$. Gọi $T_1$ và $T_2$ là các tiếp điểm của các tiếp tuyến kẻ từ điểm $M$ đến $(C)$. Viết phương trình đường thẳng $T_1T_2$.

    Hướng dẫn. $2x+y-3=0$

    Bài 19. [Đề minh hoạ D2009] Trong mặt phẳng với hệ trục toạ độ $Oxy$, cho đường tròn $\mathcal{(C)}$ có phương trình $(x-4)^2 + y^2 = 4$ và điểm $E(4;1)$. Tìm toạ độ điểm $M$ trên trục tung sao cho từ $M$ kẻ được hai tiếp tuyến $MA$, $MB$ đến đường tròn $\mathcal{(C)}$ (với $A$, $B$ là các tiếp điểm) sao cho đường thẳng $AB$ qua đểm $E$.
    Hướng dẫn. $M(0;4)$

    Bài 20. (Đề minh hoạ A2009) Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường tròn $\mathcal{(C)}$ có phương trình $x^2+y^2 – 6x + 5=0$. Tìm điểm $M$ thuộc trục tung sao cho qua $M$ kẻ được hai tiếp tuyến của $\mathcal{(C)}$ mà góc giữa hai tiếp tuyến đó bằng $60^\circ.$

    Hướng dẫn. $M_1(0;\sqrt{7})$ và $M_2(0;-\sqrt{7})$

    Bài 21. (Dự bị A2008) Trong mặt phẳng với hệ trục toạ độ $Oxy$, cho đường tròn $\mathcal{(C)}$ có phương trình $x^2 + y^2 = 1$. Tìm các giá trị thực của tham số $m$ để trên đường thẳng $y=m$ tồn tại đúng hai điểm mà từ mỗi điểm đó có thể kẻ được hai tiếp tuyến với $\mathcal{(C)}$ sao cho góc giữa hai tiếp tuyến đó bằng $60^\circ$.

    Hướng dẫn. $-2 < m < -\frac{2}{\sqrt{3}}$ hoặc $\frac{2}{\sqrt{3}} < m <2.$

    Bài 22. [D2007] Cho đường tròn $\mathcal{(C)}:(x-1)^2 + (y+2)^2 = 9$ và đường thẳng $d:3x-4y+m=0$. Tìm $m$ để trên $d$ có duy nhất một điểm $P$ mà từ đó có thể kẻ được hai tiếp tuyến $PA$, $PB$ tới $\mathcal{(C)}$ sao cho tam giác $PAB$ đều ($A$, $B$ là hai tiếp điểm).

    Hướng dẫn. $m = 19$, $ m = -41$.

    Bài 23. Cho đường tròn $\mathcal{(C)}: x^2 + y^2 +2x -4y – 20 = 0$ và điểm $A(5;-6)$. Từ $B$ vẽ các tiếp tuyến $AB$, $AC$ với đường tròn ($B$, $C$ là các tiếp điểm). Viết phương trình đường thẳng r nội tiếp tam giác $ABC$.

    Hướng dẫn. $(x – 2)^2 + (y + 2)^2 = \frac{25}{4}$.

    Bài 24. Cho đường tròn $\mathcal{(C)}: x^2 + y^2 -6x -10y + 9 = 0$ và đường thẳng $(d): x + 2y – 3 = 0$. Chứng minh rằng $(d)$ cắt $\mathcal{(C)}$ tại hai điểm phân biệt $A$, $B$. Tìm toạ độ điểm $M$ trên $\mathcal{(C)}$ sao cho tam giác $MAB$ cân tại $M$.

    Hướng dẫn. $M_1(3 + \sqrt{5}; 5 + 2\sqrt{5})$, $M_2(3 – \sqrt{5}; 5 – 2\sqrt{5})$.

    4. Bài tập tổng hợp

    Bài 1. Trong mặt phẳng tọa độ $Oxy$ cho $ A(-1;1) $ và $ B(2;3) $. Chứng minh rằng ba điểm $ O,A,B $ không thẳng hàng và viết phương trình các cạnh của $ \Delta AOB $. Viết phương trình đường cao qua $ A $, phân giác trong qua $ A $ của $ \Delta AOB $. Tìm tọa độ trực tâm, tâm đường tròn ngoại tiếp, nội tiếp của $ \Delta AOB. $ Tìm tọa độ điểm $ A’ $ đối xứng với $ A $ qua đường thẳng $ BO $. Viết phương trình đường thẳng qua $ A $ và song song với $ BO $. Viết phương trình đường thẳng qua $ A $ tạo với $ BO $ góc $60^{\circ}$.

    Bài 2. Cho tam giác $ ABC $ có $ M(2;1) $ là trung điểm cạnh $ AC $, điểm $ H(0;-3) $ là chân đường cao kẻ từ $ A $, điểm $ E(23;-2) $ thuộc đường thẳng chứa trung tuyến kẻ từ $ C $. Tìm tọa độ điểm $ B $ biết điểm $ A $ thuộc đường thẳng $ d:2x+3y-5=0 $ và điểm $ C $ có hoành độ dương.

    Bài 3. Cho tam giác $ ABC $ có đỉnh $ A(3;3) $ tâm đường tròn ngoại tiếp $ I(2;1) $ phương trình đường phân giác trong góc $ \widehat{BAC} $ là $ x-y=0 $. Tìm tọa độ các đỉnh $ B, C $ biết rằng $ BC=8/\sqrt{5} $ và góc $ \widehat{BAC} $ nhọn.

    Bài 4. Cho tam giác $ ABC $ có phương trình đường thẳng chứa đường cao kẻ từ $ B $ là $ x+3y-18=0 $, phương trình đường thẳng trung trực của đoạn thẳng $ BC $ là $ 3x+19y-279=0 $, đỉnh $ C $ thuộc đường thẳng $ d:2x-y+5=0 $. Tìm tọa độ đỉnh $ A $ biết rằng $ \widehat{BAC}=135^{\circ} $.

    Bài 5. Cho hình vuông $ ABCD $. Gọi $ M $ là trung điểm của $ BC, N $ nằm trên cạnh $ CD $ sao cho $ CN=2ND $. Biết $ M=(\frac{11}{2};\frac{1}{2}) $ và $AN$ có phương trình $ 2x-y-3=0 $. Tìm tọa độ đỉnh $ A $.

    Bài 6. Cho tam giác $ ABC $ có đường cao $ AH:3x+4y+10=0 $, phân giác trong $ BE:x-y+1=0 $. Điểm $ M(0;2) $ thuộc $ AB $ và cách $ C $ một khoảng $ \sqrt{2} $. Tính diện tích tam giác $ABC$.

    Bài 7. Cho hình chữ nhật $ ABCD $ có diện tích bằng 12, tâm $ I(9/2;3/2) $, trung điểm của $ BC $ là $ M(3;0) $ và $ x_B>x_C $. Xác định tọa độ các đỉnh của nó.

    Bài 8. Cho $ \Delta ABC $ có tâm đường tròn ngoại tiếp $ I(4;-1) $, đường cao và trung tuyến qua $ A $ có phương trình lần lượt là $ d_1:x+y-1=0,d_2:x+2y-1=0 $. Viết phương trình các đường thẳng chứa các cạnh của nó.

    Bài 9. Cho hình chữ nhật $ ABCD $ trong mặt phẳng tọa độ $ Oxy $. Cạnh $ AB $ có phương trình là $ x-y+3=0 $. Điểm $ I(0;1) $ là giao điểm của $ AC $ và $ BD $. Tìm tọa độ các đỉnh $ A, B, C, D $ nếu $ AB=3AD $ và điểm $ A $ có hoành độ lớn hơn hoành độ của điểm $ B $.

    Bài 10. Cho hình vuông $ MNPQ $. Biết $ MN,NP,PQ,QM $ lần lượt đi qua các điểm có tọa độ $ A(10;3),B(7;-2),C(-3;4),D(4;-7) $. Lập phương trình $ MN $.

    Bài 11. Cho $ C(6;0), d:3x-y-10=0,\Delta:3x+3y-16=0 $. Tìm tọa độ đỉnh $ B $ của tam giác $ ABC $ biết $ AC>AB $, đường thẳng $ d $ chứa phân giác trong của góc $ A, \Delta\bot AC $ đồng thời ba đường thẳng $ \Delta,d $ và trung trực của $ BC $ đồng quy tại một điểm.

    Bài 12. Cho $ \Delta ABC $ có đỉnh $ A(1;5) $, trọng tâm $ G(1;3) $, trực tâm $ H(-23;17) $. Tìm tọa độ $ B,C $ nếu $ x_B>x_C $.

    Bài 13. Lập phương trình các cạnh của tam giác đều $ ABC $ biết $ A(3; -5) $ và trọng tâm $ G(1; 1) $.

    Bài 14. Viết phương trình cạnh $ AB $ (đường thẳng $ AB $ có hệ số góc dương), $ AD $ của hình vuông $ ABCD $ biết tọa độ $ A(2; -1) $ và đường chéo $ BD: x+2y-5=0 $.

    Bài 15. Trong mặt phẳng với hệ toạ độ $ Oxy $ cho hai điểm $ A(1;-1) $ và $ B(4;3) $. Tìm toạ độ các điểm $ C $ và $ D $ sao cho tứ giác $ ABCD $ là hình vuông.

  • Integration by Substitution

    Integration by Substitution

    Integration by Substitution

    “Integration by Substitution” (also called “u-Substitution” or “The Reverse Chain Rule”) is a method to find an integral, but only when it can be set up in a special way.

    The first and most vital step is to be able to write our integral in this form:

    integration by substitution general
    Note that we have $g(x)$ and its derivative $g'(x)$

    Like in this example:

    integration by substitution cos(x^2) 2x dx
    Here $f=cos$, and we have $g=x^2$  and its derivative $2x$.

    This integral is good to go!

    When our integral is set up like that, we can do this substitution:

    integration by substitution general

    Then we can integrate $f(u)$, and finish by putting $g(x)$ back as $u$.

    Substitution Rule

    Integration by Substitution 1

    Example Integration by Substitution

    Example 1. Find the integral $$\int \cos(x^2) 2x dx$$

    We know (from above) that it is in the right form to do the substitution:

    integration by substitution cos(x^2) 2x dx

    Now integrate: $$\int \cos(u) du = \sin(u) + C$$ And finally put $u=x^2$ back again: $$\sin(x^2) + C$$ So $\displaystyle \int\cos(x^2) 2x dx = \sin(x^2) + C.$$

    That worked out really nicely! (Well, I knew it would.)

    But this method only works on some integrals of course, and it may need rearranging:

    Example 2. Find the integral $$\int \cos(x^2) 6x dx$$Oh no! It is $6x$, not $2x$ like before. Our perfect setup is gone.

    Never fear! Just rearrange the integral like this: $$\int\cos(x^2) 6x dx = 3\int\cos(x^2) 2x dx$$

    (We can pull constant multipliers outside the integration, see Rules of Integration.)

    Then go ahead as before: $$3\int\cos(u) du = 3 \sin(u) + C$$

    Now put $u=x^2$ back again: $$3 sin(x^2) + C$$

    Done!

    Now let’s try a slightly harder example:

    Example 3. Find the integral $$\int \frac{x}{x^2+1} dx$$Let me see … the derivative of x^2 +1 is 2x … so how about we rearrange it like this: $$\int \frac{x}{x^2 +1} dx = \frac{1}{2}\int \frac{2x}{x^2 +1} dx$$ Then we have:

    integration by substitution 2x/(x^2+1)

    Then integrate:$$\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln(u) + C$$

    Now put $u=x^2 +1$ back again: $$\frac{1}{2}\ln(x^2 +1) + C$$

    And how about this one:

    Example 4. Find the integral $$\int (x+1)^3  dx$$

    Let me see … the derivative of $x+1$ is … well it is simply 1.

    So we can have this:$$\int (x+1)^3  dx = \int (x+1)^3  \cdot 1 dx$$ Then we have:

    integration by substitution (x+1)^3

    Then integrate:$$\int u^3  du = \frac{1}{4}\cdot u^4 + C$$

    Now put $u=x+1$ back again:$$ \frac{(x+1)^4}{4} + C$$

    We can take that idea further like this:

    Example 5. Find the integral $$\int (5x+2)^7 dx$$

    If it was in THIS form we could do it:$$\int (5x+2)^7\cdot 5dx$$

    So let’s make it so by doing this: $$\frac{1}{5} \int (5x+2)^7\cdot 5dx$$ The $\frac{1}{5}$ and 5 cancel out so all is fine.

    And now we can have $u=5x+2$

    integration by substitution (x+1)^3

    And then integrate: $$\frac{1}{5} \int u^7 du = \frac{1}{5} \cdot \frac{1}{8} u^8 +C$$ Now put $u=5x+2$ back again, and simplify: $$\frac{(5x+2)^8}{40} + C$$

    Now get some practice, OK?

    In Summary

    • When we can put an integral in this form:

    integration by substitution general

    • Then we can make $u=g(x)$ and integrate $\displaystyle \int f(u) du$
    • And finish up by re-inserting $g(x)$ where $u$ is $g(x)$.

    (https://www.mathsisfun.com/calculus/integration-by-substitution.html)

  • Lý thuyết và bài tập dấu nhị thức bậc nhất

    Lý thuyết và bài tập dấu nhị thức bậc nhất

    Lý thuyết và bài tập dấu nhị thức bậc nhất

    1. Định lí về dấu nhị thức bậc nhất

    1.1. Nhị thức bậc nhất là gì?

    Nhị thức bậc nhất là các biểu thức có dạng $ ax+b $, trong đó $ a ≠ 0 $. Cho một nhị thức bậc nhất $ f(x)=ax+b $ thì số $ x₀ = -b/a $ làm cho $ f(x)=0 $ được gọi là nghiệm của nhị thức bậc nhất.

    1.2. Định lí về dấu nhị thức bậc nhất

    Bây giờ, chúng ta viết lại nhị thức $ f(x) $ thành \[ f(x)=a\left(x-x_0\right) \] Dễ thấy, khi $ x>x_0 \Leftrightarrow x-x_0>0$ thì $ f(x) $ và hệ số $ a $ cùng dấu với nhau, ngược lại, khi $ x<x_0 \Leftrightarrow x-x_0<0 $ thì $ f(x) $ và hệ số $ a $ trái dấu với nhau. Từ đó chúng ta có định lý về dấu của nhị thức bậc nhất như sau:

    Cho nhị thức $ f(x)=ax+b $ với $ a\ne 0 $ thì

    • $ f(x) $ cùng dấu với hệ số $ a $ với mọi $ x >-b/a, $
    • $ f(x) $ trái dấu với hệ số $ a $ với mọi $ x <-b/a. $

    Để dễ nhớ, ta lập bảng sau và sử dụng quy tắc lớn cùng – bé khác, nghĩa là ứng với những giá trị của $ x $ ở bên phải nghiệm $ x_0 $ thì $ f(x) $ và hệ số $ a $ có cùng dấu, còn ở bên trái thì ngược dấu với hệ số $ a $.

    Bảng xét dấu của nhị thức bậc nhất

    định lí dấu nhị thức bậc nhất f(x)=ax+b

    Cụ thể, với trường hợp $a>0$ chúng ta có bảng xét dấu của $f(x)$ như sau:

    bảng xét dấu của nhị thức bậc nhất khi hệ số a dương

    còn khi $a<0$ chúng ta có bảng xét dấu như sau:

    bxd nhị thức bậc nhất khi hệ số a <0

    2. Ví dụ dấu của nhị thức bậc nhất

    Ví dụ 1. Xét dấu biểu thức $ f(x)=3x+6 $.

    Hướng dẫn. Ta có $ 3x+6=0 \Leftrightarrow x=-2. $ Hệ số $a=3$ là số dương, nên ta có bảng xét dấu sau đây:

    bang xet dau cua nhi thuc 3x+6
    Như vậy, $ f(x)>0 \Leftrightarrow x\in (-2,+\infty) $, $ f(x)<0 \Leftrightarrow x\in (-\infty,-2) $ và $ f(x)=0 \Leftrightarrow x=-2. $

    Ví dụ 2. Xét dấu biểu thức $ f(x)=1-3x $.

    Hướng dẫn. Ta có $ 1-3x=0 \Leftrightarrow x=\frac{1}{3}. $ Hệ số $a=-3$ là số âm, nên ta có bảng xét dấu sau đây:

    bang xet dau cua nhi thuc 1-3x
    Như vậy, $ f(x)>0 \Leftrightarrow x\in (-\infty;\frac{1}{3}) $, $ f(x)<0 \Leftrightarrow x\in (\frac{1}{3};+\infty) $ và $ f(x)=0 \Leftrightarrow x=\frac{1}{3}. $

    3. Ứng dụng định lý dấu của nhị thức bậc nhất

    • Xét dấu các biểu thức có dạng tích — thương các nhị thức bậc nhất, từ đó sử dụng để giải bất phương trình hoặc khảo sát hàm số.
    • Lập bảng phá dấu giá trị tuyệt đối.

    3.1. Cách lập bảng xét dấu của tích, thương các nhị thức bậc nhất

    Để xét dấu của biểu thức $ P(x) $ gồm tích hoặc thương các nhị thức bậc nhất, ta thực hiện như sau:

    • Tìm các nghiệm của từng nhị thức bậc nhất tạo nên $ P(x) $, tức là tìm nghiệm hoặc những điểm làm cho $ P(x) $ không xác định (tức nghiệm của mẫu thức, nếu có): $ x_1,x_2,\dots,x_n $.
    • Lập bảng xét dấu của $ P(x) $ gồm có:
      • Dòng đầu tiên gồm các giá trị $ x_1,x_2,\dots,x_n $ được sắp xếp theo thứ tự từ bé đến lớn.
      • Các dòng tiếp theo lần lượt là các nhị thức và dấu của chúng.
      • Dòng cuối cùng là dấu của $ P(x) $, sử dụng quy tắc nhân dấu đã học ở cấp II (tức là số dương nhân số dương bằng số dương, số âm nhân số âm bằng số dương,…)

    Ví dụ 3. Lập bảng xét dấu biểu thức \[ P(x)=(x-1)(x+2) \]

    Hướng dẫn. Đầu tiên, chúng ta tìm nghiệm của từng nhị thức, có:

    • $ x-1=0 \Leftrightarrow x=1, $
    • $ x+2=0 \Leftrightarrow x=-2. $

    Sau đó, ta lập bảng xét dấu của $ P(x) $ như sau:

    cách lập bảng xét dấu của một tích

    Chú ý. Để kiểm tra dấu của một khoảng nào $(a;b)$ đó đúng chúng ta chỉ cần chọn một giá trị $ x_0 $ bất kì thuộc khoảng $ (a,b) $ và tính giá trị của $f(x_0)$ đó.

    Ví dụ 4. Lập bảng xét dấu của biểu thức $$f(x)=(x+2)(x^2+5x-6).$$

    Hướng dẫn. Chúng ta đưa biểu thức $f(x)$ về tích các nhị thức bậc nhất bằng cách phân tích $x^2+5x-6=(x-1)(x+6)$. Do đó, biểu thức $f(x)$ trở thành$$f(x)=(x+2)(x-1)(x+6)$$ Bảng xét dấu như sau:

    bang xet dau cua tich

    Ví dụ 5. Lập bảng xét dấu của biểu thức $$g(x)=\frac{x+1}{x-7}.$$

    Hướng dẫn. Chúng ta có

    • $ g(x) $ không xác định khi $ x=7;$
    • $ g(x)=0 \Leftrightarrow x=-1$

    Từ đó có bảng xét dấu như sau:

    bảng xét dấu của một thương

    Ví dụ 6. Lập bảng xét dấu của biểu thức \[ h(x)=\frac{1}{x+2}-\frac{3}{x+4} \]

    Hướng dẫn. Rõ ràng biểu thức $ h(x)$ chưa có dạng tích/thương các nhị thức bậc nhất, nên chúng ta cần quy đồng giữ lại mẫu của biểu thức đó. Cụ thể như sau $$h(x)=\frac{-2(x+1)}{\left( x+4\right) \left( x+2\right) }$$

    Từ đó lập được bảng xét dấu như hình vẽ dưới đây (có thể ghép dòng $-2$ vào với $x+1$ thành $-2x-2$):

    cach lap bang xet dau cua mot thuong.jpg

    Một số lưu ý khi lập bảng xét dấu một biểu thức:

    • Dấu của các biểu thức $ (ax+b)^{2n} $ luôn là dấu dương hoặc bằng không, chỉ bằng không tại mỗi $ x=-b/a. $
    • Dấu của các biểu thức $ (ax+b)^{2n+1} $ luôn cùng dấu với nhị thức $ ax+b. $
    • Nếu biểu thức $ f(x) $ chỉ gồm tích hoặc thương các nhân tử có dạng $ (ax+b)^n $ với số mũ lẻ (tức $f(x)$ chỉ có nghiệm đơn hoặc nghiệm bội lẻ) thì dấu của $ f(x) $ sẽ tuân theo quy luật đan dấu. Do đó, trong thực hành ta chỉ cần lập bảng xét dấu có hai dòng, hoặc vẽ trục xét dấu, chẳng hạn biểu thức $h(x)$ ở trên có thể lập bảng xét dấu ngắn gọn như sau:

    cách lập nhanh bảng xét dấu

    3.2. Sử dụng dấu nhị thức bậc nhất giải bất phương trình tích, bất phương trình thương

    Phương pháp chung để giải các bất phương trình tích, thương là:

    • Tìm điều kiện xác định và quy đồng không bỏ mẫu các phân phức.
    • Phân tích bất phương trình thành tích, thương các nhị thức bậc nhất.
    • Lập bảng xét dấu cho bất phương trình và kết luận nghiệm.

    Ví dụ 7. Giải bất phương trình sau: $$ (2x-3)(4-5x)+(2x-3)>0 $$
    Hướng dẫn. Biến đổi bất phương trình thành \begin{align} &-5\left( x-1\right) \left( 2x-3\right) >0\\ \Leftrightarrow &\left( x-1\right) \left( 2x-3\right)<0 \end{align}Bảng xét dấu cho vế trái của bất phương trình cuối cùng này như sau:

    giai bat phuong trinh tich

    Suy ra, tập nghiệm của bất phương trình đã cho là $ S=\left(1;\frac{3}{2}\right)$

    Ví dụ 8. Giải bất phương trình sau: $$\frac{4x+3}{\left( x+2\right) ^{2}}-\frac{4}{x+4}<0$$
    Hướng dẫn. Điều kiện xác định $ x\ne -4;x\ne -2$. Chúng ta quy đồng giữ lại mẫu được bất phương trình đã cho tương đương với $$\frac{3x-4}{\left( x+4\right) \left( x+2\right) ^{2}}<0$$ Lập bảng xét dấu cho vế trái được:

    giải bất phương trình chứa ẩn ở mẫu bằng lập bxd

    Suy ra, tập nghiệm của bất phương trình đã cho là $ S=\left(-4;-2\right)\cup \left(-2;\frac{4}{3}\right ).$

    Ví dụ 9. Giải các bất phương trình sau:

    • $ (2x+3)^2-(x-2)^2 \geqslant 0 $
    • $ (x-3)^4-1 \leqslant 0 $
    • $ \frac{1}{x} >1 $
    • $ \frac{x+2}{3x-1} \geqslant -2 $
    • $ \frac{30}{x+1}-\frac{24}{x+2}+\frac{3}{x+3}+1 >0 $

    Sau khi đã học cả dấu tam thức bậc hai, các em có thể tham khảo video sau:

    https://www.youtube.com/watch?v=rKaFF_F1oAc

    3.3. Sử dụng dấu nhị thức bậc nhất giải bất phương trình chứa dấu giá trị tuyệt đối

    Về phương trình chứa dấu giá trị tuyệt đối xin mời các bạn xem tại đây Phương trình chứa trị tuyệt đối

    Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối cơ bản

    Bằng cách áp dụng tính chất của giá trị tuyệt đối ta có thể dễ dàng giải các bất phương trình dạng $ và $ với $.

    • $ |f(x)| <a \Leftrightarrow \begin{cases} -a<f(x)\\ f(x)<a \end{cases} $ hay viết gọn là $ -a<f(x)<a$
    • $ f(x)>a \Leftrightarrow \left[ \begin{array}{l} f(x)<-a\\ f(x)>a \end{array}\right.$

    Bất phương trình nhiều dấu giá trị tuyệt đối cơ bản

    Chúng ta lập bảng khử dấu giá trị tuyệt đối, chi tiết về phương pháp này xin mời các bạn xem một ví dụ sau:

    Ví dụ 10. Giải bất phương trình

     

  • Chuyên đề thiết diện trong hình học không gian

    Chuyên đề thiết diện trong hình học không gian

    Chuyên đề thiết diện trong hình học không gian

    Thầy cô tải file PDF chuyên đề thiết diện ở cuối bài viết.

    Xem thêm: Thiết diện là gì và các phương pháp tìm thiết diện

    Bài toán xác định thiết diện của một hình chóp, một hình lăng trụ khi cắt bởi một mặt phẳng gắn liền với các cách xác định một mặt phẳng trong không gian.

    Ở bài này, chúng tôi xin giới thiệu 3 loại toán xác định thiết diện của một hình không gian cắt bởi mặt phẳng $\left( \alpha  \right)$ trong các trường hợp sau:

    1. Mặt phẳng $\left( \alpha  \right)$ xác định bởi ba điểm phân biệt không thẳng hàng.

    ­Đối với loại toán này, chúng tôi giới thiệu 2 phương pháp để xác định thiết diện là phương pháp giao tuyến gốc và phương pháp phép chiếu xuyên tâm.

    1.1. Phương pháp giao tuyến gốc (Trace method)

    • Xác định giao tuyến $d$ của mặt phẳng $\left( \alpha \right)$ với một mặt ${\cal H}$ của hình chóp, hình lăng trụ (thường là với mặt đáy).
    • Tìm các giao điểm của giao tuyến $d$ với các cạnh, đường chéo của mặt ${\cal H}$.
    • Các giao điểm này thuộc mặt đáy nhưng cũng thuộc vào các mặt bên của hình ${\cal H}$. Từ các giao điểm này, chúng ta sẽ xác định được giao tuyến của $\left( \alpha \right)$ và các mặt còn lại của hình chóp. Từ đó dựng được thiết diện.

    Ví dụ 1. Cho hình chóp $S.ABCD$ có đáy không là hình thang. Giả sử $M$ là một điểm trên $SD$, xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {ABM} \right)$.

    chuyen de thiet dien

    Hướng dẫn.

    • Rõ ràng rằng giao tuyến của mặt phẳng $\left( {ABM} \right)$ với mặt đáy $\left( {ABCD} \right)$ là đường thẳng $AB$, nên chúng ta lựa chọn đường thẳng $AB$ làm giao tuyến gốc.
    • Tiếp theo, ta xác định các giao điểm của đường thẳng $AB$ với các cạnh của đáy, nếu không được thì sẽ sử dụng đến giao điểm với đường chéo. Vì tứ giác $ABCD$ không là hình thang nên kéo dài hai đường thẳng $AB$ và $CD$ thì chúng sẽ cắt nhau, giả sử là điểm $I$.
    • Lúc này, đường thẳng $IM$ nằm trong mặt phẳng $\left( {SCD} \right)$ nên nó sẽ cắt được đường thẳng $SC$, giả sử cắt tại điểm $N$.
    • Thấy ngay, mặt phẳng $\left( {ABM} \right)$ lần lượt cắt các mặt của hình chóp $S.ABCD$ theo các giao tuyến tạo thành một tứ giác là $AMNB$ nên thiết diện chính là tứ giác $AMNB$.

    Ví dụ 2. Cho tứ diện $ABCD$ có $M,N$ là trung điểm của $AB,CD$. Giả sử $P$ là một điểm nằm trên cạnh $AD$ nhưng không là trung điểm. Xác định thiết diện của mặt phẳng $\left( {MNP} \right)$ và tứ diện?

    Chuyên đề thiết diện trong hình học không gian 2

    Hướng dẫn. Chúng ta lựa chọn $MP$ là giao tuyến gốc. Trong mặt phẳng $\left( {ABD} \right),\;$kéo dài $MP$ cắt $BD$ tại $E$. Trong mặt phẳng $\left( {BCD} \right)$, nối $EN$ cắt $BC$ tại $Q$. Thiết diện là tứ giác $MPNQ$.

    Ví dụ 3. Cho hình chóp $S.ABCD$ có điểm $M$ là trung điểm $SC,N$ là một điểm trên cạnh $SD$ sao cho $SN < DN$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {AMN} \right)$.

    Hướng dẫn. Chúng ta lựa chọn $MN$ làm giao tuyến gốc. Trong mặt phẳng $\left( {SCD} \right)$, kéo dài $MN$ cắt $CD$ tại $P$. Trong mặt phẳng $\left( {ABCD} \right)$, nối $AP$ cắt $BC$ tại $Q$, tùy thuộc vào vị trí điểm $Q$ nằm trong hay ngoài đoạn $BC$ mà ta được thiết diện là như trong 2 hình vẽ sau đây.

    Chuyên đề thiết diện trong hình học không gian 3Ví dụ 4. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M,N,P$ lần lượt là trung điểm của $BC,CD$ và $SA$. Xác định thiết diện của hình chóp và mặt phẳng $\left( {MNP} \right)$.

    Chuyên đề thiết diện trong hình học không gian 4

    Hướng dẫn. Chúng ta chọn $MN$ làm giao tuyến gốc. Trong mặt phẳng $\left( {ABCD} \right)$, kéo dài $MN$ cắt $AB,AD$ lần lượt tại $J,I$. Trong mặt phẳng $\left( {SAD} \right)$, gọi giao điểm của $PI$ và $SD$ là $O.$ Trong mặt phẳng $\left( {SAB} \right)$, gọi $Q$ là giao điểm của $PJ$ và $SB$. Thiết diện là ngũ giác $MNOPQ$.

    Ví dụ 5. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M,N,P$ lần lượt là trung điểm của $CD,BC$ và $SB$. Xác định thiết diện của hình chóp và mặt phẳng $\left( {MNP} \right)$.

    Chuyên đề thiết diện trong hình học không gian 5

    Hướng dẫn. Trong mặt phẳng $\left( {ABCD} \right)$ gọi $O,K$ lần lượt là giao điểm của $MN$ với $AB$ và $AD$. Trong mặt phẳng $\left( {SAB} \right)$ gọi $Q$ là giao điểm của $SA$ và $PO$. Trong mặt phẳng $\left( {SAD} \right)$ gọi $R$ là giao điểm của $QK$ và $SD$. Thiết diện là ngũ giác $MNPQR$.

    Ví dụ 6. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $O$. Gọi $M,N$ lần lượt là trung điểm của $BC,CD$. Trên đoạn $SO$ lấy điểm $P$ sao cho $SP > OP$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {MNP} \right)$.

    Chuyên đề thiết diện trong hình học không gian 6

    Hướng dẫn. Trong mặt phẳng $\left( {ABCD} \right)$ gọi $E,F,G$ lần lượt là giao điểm của $MN$ với $AB,AD,AC$. Trong mặt phẳng $\left( {SAC} \right)$ gọi $J = \;GP \cap SA$, trong $\left( {SAB} \right)$ gọi $K = JE \cap SB$, trong $\left( {SAD} \right)$ gọi$\;I = JF \cap SD$. Thiết diện là ngũ giác $MNIJK$.

    Ví dụ 7. Cho tứ diện $ABCD$ có $M$ là trung điểm của $AB$ và $G$ là trọng tâm tam giác $ACD.\;N$ là một điểm bất kì thuộc đoạn $BC$. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $\left( {MNG} \right).$

    Chuyên đề thiết diện trong hình học không gian 7

    Hướng dẫn. Tình huống này học sinh dễ ngộ nhận $MN$ cắt $AC,\;$điều này chưa chắc xảy ra vì nếu $N$ ở vị trí trung điểm $BC$ thì khi đó $MN$ và $AC$ song song với nhau.

    Chúng ta có thể sử dụng phương pháp phép chiếu xuyên tâm hoặc chọn giao tuyến gốc như sau:

    • Trong mặt phẳng $(ACD$), kéo dài $AG$ cắt $CD$ tại $F$.
    • Trong mặt phẳng $\left( {ABF} \right)$ gọi $I$ là giao điểm của $MG$ và $BF$, hai đường thẳng này chắc chắn cắt nhau vì $\frac{{AM}}{{AB}} = \frac{1}{2} \ne \frac{{AG}}{{AF}} = \frac{1}{3}$. Giao tuyến gốc ở đây chính là đường thẳng $NI$.
    • Trong mặt phẳng $\left( {BCD} \right)$ gọi $P$ là giao điểm của $CD$ và $NI$.
    • Thiết diện là tứ giác $MNPQ$.

    1.2. Phương pháp phép chiếu xuyên tâm (Inner Projection Method).

    Phép chiếu xuyên tâm (còn được gọi là phép phối cảnh, tiếng Anh: inner projection) được giới thiệu ngay từ lớp 8, trong chương trình công nghệ – vẽ kỹ thuật.

    định nghĩa khái niệm phép chiếu xuyên tâm là gì

    Trong không gian, cho một điểm $S$ và một mặt phẳng $\left( P \right)$ không đi qua $S$. Quy tắc biến mỗi điểm $M$ trong không gian thành điểm  là giao điểm của mặt phẳng $\left( P \right)$ và đường thẳng $SM$ được gọi là phép chiếu xuyên tâm (tâm $S$) xuống mặt phẳng $\left( P \right)$.

    Phương pháp phép chiếu xuyên tâm còn được gọi là phương pháp đường gióng.

    • Chọn một tam giác trên mặt phẳng $\left( \alpha \right)$ làm tam giác cơ sở và xác định hình chiếu của nó lên mặt đáy qua phép chiếu xuyên tâm với tâm là đỉnh của hình chóp.
    • Xác định các giao điểm của tam giác hình chiếu với các cạnh, đường chéo của đáy.
    • Dựa vào quan hệ liên thuộc, tìm các điểm trên mặt phẳng $\left( \alpha \right)$ tương ứng với các điểm ở dưới mặt đáy.

    Ví dụ 1. Cho hình chóp $S.ABCD$ có $C’$ là một điểm trên cạnh $SC$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {ABC’} \right)$ trong trường hợp:

    1. $AB$ không song song với $CD$;
    2. $AB$ song song với $CD$.

    chuyên đề thiết diện bằng phương pháp phép chiếu xuyên tâm

    Hướng dẫn. Rõ ràng phần 1 học sinh có thể làm bằng phương pháp giao tuyến gốc. Tuy nhiên sang phần 2 học sinh sẽ không thể giải được theo phương pháp đó mà phải sử dụng phương pháp phép chiếu xuyên tâm.

    • Chọn tam giác $ABC’$ làm tam giác cơ sở. Qua phép chiếu xuyên tâm $S$ lên mặt phẳng $(ABCD$) thì tam giác cơ sở biến thành tam giác $ABC$. Chúng ta sẽ lần lượt đi tìm giao điểm của các cạnh tam giác này với các cạnh và đường chéo của đáy.
    • Trong mặt phẳng $\left( {ABCD} \right)$ gọi $O$ là giao điểm của $AC$ và $BD$. Nhận thấy rằng điểm $O$ thuộc tam giác $ABC$ thì sẽ có một điểm $O’$ tương ứng thuộc tam giác cơ sở $ABC’$ mà qua phép chiếu sinh ra điểm $O$ này. Nhiệm vụ của chúng ta là tìm ra điểm $O’$ đó.
    • Trong mặt phẳng $\left( {SAC} \right)$ thấy ngay $O’$ là giao điểm của $SO$ và $AC’$.
    • Cuối cùng, trong mặt phẳng $\left( {SBD} \right)$ gọi $D’$ là giao điểm của $BO’$ và $SD$. Thiết diện là tứ giác $ABC’D’.$

    Ví dụ 2. Cho hình chóp $S.ABCD$ có ba điểm $M,N,P$ lần lượt thuộc $SA,SB,SC$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {MNP} \right)$.

    chuyên đề thiết diện bằng phương pháp phép chiếu xuyên tâm

    Hướng dẫn. Chọn tam giác $MNP$ làm tam giác cơ sở. Chiếu lên đáy được tam giác $ABC$. Cạnh $AC$ của tam giác hình chiếu này cắt đường chéo $BD$ của đáy tại $O$. Trong mặt phẳng $\left( {SAC} \right)$ gọi $I$ là giao điểm của $SO$ và $MN$. Trong mặt phẳng $\left( {SBD} \right)$ gọi $Q$ là giao điểm của $NI$ và $SD$. Thiết diện là tứ giác $MNPQ.$

    Ví dụ 3. [Ví dụ 7 ở phần 1.1.] Cho tứ diện $ABCD$ có $M$ là trung điểm của $AB$ và $G$ là trọng tâm tam giác $ACD.\;N$ là một điểm bất kì thuộc đoạn $BC$. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $\left( {MNG} \right).$

    Chuyên đề thiết diện trong hình học không gian 8

    Hướng dẫn.

    • Chọn tam giác $MNG$ làm tam giác cơ sở, chiếu lên đáy được tam giác $BNF$. Cạnh $BF$ của tam giác hình chiếu này cắt $ND$ tại $O$.
    • Trong mặt phẳng $\left( {ABF} \right)$, gọi giao điểm của $MG$ và $SO$ là $I$.
    • Trong mặt phẳng $\left( {AND} \right)$, đường thẳng $NI$ cắt $AD$ tại $Q.$
    • Trong mặt phẳng $\left( {ACD} \right)$, đường thẳng $QG$ cắt $CD$ tại $P$.
    • Thiết diện là tứ giác $MNPQ.$ 

    Ví dụ 4. Cho hình chóp $S.ABCD$ có $M$ là một điểm thuộc miền trong tam giác $SCD$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( {ABM} \right)$.

    Chuyên đề thiết diện trong hình học không gian 9

    Hướng dẫn. Trong mặt phẳng $\left( {SCD} \right)$ gọi $E = SM \cap CD$, trong mặt phẳng $\left( {ABCD} \right)$ gọi $F = AC \cap BE$, trong mặt phẳng $\left( {SBE} \right)$ gọi$\;I = BM \cap SF$, trong mặt phẳng $\left( {SAC} \right)$ gọi $N = AI \cap SC$, trong mặt phẳng $\left( {SCD} \right)$ gọi $H = MN \cap SD$. Thiết diện là tứ giác $ABNH$. 

    Ví dụ 5. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $O.$ Gọi $M,N$ lần lượt là trung điểm $SA,SD$. Xác định thiết diện của hình chóp và mặt phẳng $\left( {OMN} \right).$

    Chuyên đề thiết diện trong hình học không gian 10

    Hướng dẫn. Nếu ta chọn tam giác cơ sở là $OMN$ thì chiếu xuống mặt đáy được tam giác $OAD$. Tam giác hình chiếu này không cắt được cạnh nào của hình bình hành $ABCD$. Do đó ta pahir chọn một tam giác cơ sở khác.

    Lấy điểm $K$ bất kì thuộc $MO$ và chọn $MNK$ làm tam giác cơ sở. Chiếu tam giác này lên mặt đáy được tam giác $ADH$. Kéo dài $DH$ cắt $NK$ tại $J$. Đường thẳng $OJ$ cắt $AB,CD$ tại $Q,P$. Thiết diện là tứ giác $MNPQ.$

    Cách giải khác cho ví dụ này xin mời xem Ví dụ 1 ở phần 2 sau đây.

    2. Mặt phẳng $\left( \alpha  \right)$ đi qua một điểm và song song với hai đường thẳng

    Chúng ta thường sử dụng 2 kết quả sau để dựng thiết diện.

    • Nếu mặt phẳng $\left( \alpha  \right){\rm{\;}}$chứa đường thẳng $d$ mà $d\parallel \left( \beta  \right)$ thì giao tuyến của hai mặt phẳng $\left( \alpha  \right)$ và $\left( \beta  \right)$ cũng song song với đường thẳng $d$.

    giao tuyen cua mot mat phang chua duong thang song song

    • Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng cũng song song với đường thẳng đó.

    Chuyên đề thiết diện trong hình học không gian 11

     Ví dụ 1. Cho hình chóp $S.ABCD$ có đáy là hình bình hành tâm $O$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( \alpha  \right)$ đi qua $O$ và song song với $SB,SC.$ Thiết diện là hình gì?

    thiet dien song song

    Hướng dẫn.

    • Qua $O$ kẻ đường thẳng song song với $SB$, nó cắt $SD$ tại $N$. $N$ là trung điểm $SD$ vì $ON$ là đường trung bình của tam giác $SBD.$
    • Tương tự, qua $O$ kẻ đường thẳng song song với $SC$, nó cắt $SA$ tại trung điểm $M$.
    • Mặt phẳng $\left( \alpha \right)$ chính là mặt phẳng $\left( {OMN} \right)$.
    • Đường thẳng $MN$ nằm trong mặt phẳng $\left( {OMN} \right)$ và song song với $\left( {ABCD} \right)$, nên giao tuyến $d$ của hai mặt phẳng $\left( {OMN} \right)$ và $\left( {ABCD} \right)$ phải song song với đường thẳng $MN$.
    • Mà giao tuyến $d$ chắc chắn phải chứa điểm $O$. Do đó, $d$ là đường thẳng đi qua $O$ và song song $MN$, tức là cũng song song với $AD$.
    • Đường thẳng $d$ cắt $AB,CD\;$tại $Q,P$ thì thiết diện là hình thang $MNPQ$.

    Ví dụ 2. Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $\left( P \right)$ là mặt phẳng đi qua điểm $M$ thuộc đoạn $AC$ và song song với hai đường thẳng $BD,SA$. Hãy dựng thiết diện của hình chóp với mặt phẳng $\left( P \right).$

    Hướng dẫn. Chúng ta phải xét hai trường hợp, điểm $M$ nằm trong đoạn $AO$ và nằm trong đoạn $OC$, với $O$ là tâm hình bình hành.

    Chuyên đề thiết diện trong hình học không gian 12

    Trường hợp 1. Nếu $M$ nằm trong đoạn $AO.$

    • Qua $M$ dựng đường thẳng song song với $BD$, nó cắt $AB$ ở $E$, cắt $AD$ ở $F.$
    • Qua $E,M,F$ lần lượt dựng các đường thẳng song song với $SA.$ Chúng cắt $SB,SC,SD$ lần lượt tại $I,H,G$.
    • Thiết diện là ngũ giác $EFGHI$.

    Chuyên đề thiết diện trong hình học không gian 13

    Trường hợp 2. Nếu $M$ nằm trong đoạn $OC.$

    • Qua $M$ dựng đường thẳng song song với $BD$, nó cắt $DC$ ở $E’$, cắt $BC$ ở $F’.$
    • Qua $M$ dựng đường thẳng song song với $SA$, nó cắt $SC$ tại $H’$.
    • Thiết diện là tam giác $E’F’H’.$

    Ví dụ 3. Cho tứ diện $ABCD$ có $I,J$ lần lượt là trung điểm của $AB,CD$. Gọi $M$ là một điểm trên đoạn $IJ$ và $\left( \alpha  \right)$ là mặt phẳng qua $M$ đồng thời song song với $AB,CD$. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng $\left( \alpha  \right)$, thiết diện là hình gì?

    tứ diện abcd

    Hướng dẫn.

    • Trong mặt phẳng $\left( {ABJ} \right),$ qua $M$ kẻ đường thẳng $d$ song song với $AB.$ Đường thẳng $d$ cắt $BJ,AJ$ lần lượt tại $E$ và $F.$
    • Qua $E$ kẻ đường thẳng song song với $CD$, nó cắt $BC,BD$ tại $H$ và $K$.
    • Qua $F$ kẻ đường thẳng song song với $CD$, nó cắt $AC,AD$ tại $P$ và $Q$.
    • Thiết diện là hình bình hành $HKQP$.

    Ví dụ 4. Cho hình chóp $S.ABCD$ có $M,\;N$ là hai điểm trên $AB,\;CD$. Gọi $\left( \alpha  \right)\;$là mặt phẳng chứa $MN$ và song song với $SA$. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng $\left( \alpha  \right)$.

    Chuyên đề thiết diện trong hình học không gian 14

    Hướng dẫn. Gọi $MN \cap AC = O$. Qua $M,O$ các kẻ đường thẳng song song với $SA,$ chúng cắt $SB,SC$ lần lượt tại $P,Q$. Thiết diện là tứ giác $MNQP$.

    3. Mặt phẳng $\left( \alpha  \right)$ đi qua một điểm và vuông góc với một đường thẳng

    Chúng ta chuyển quan hệ vuông góc sang quan hệ song song nhờ định lý:

    Cho đường thẳng $d$ vuông góc với mặt phẳng $\left( P \right)$ thì mọi đường thẳng $\Delta $ vuông góc với $d$ đều song song hoặc nằm trong mặt phẳng $\left( P \right).$

    thiet dien vuong goc

    Trường hợp mặt phẳng $\left( \alpha  \right)$ chứa đường thẳng $a$ và vuông góc với mặt phẳng $\left( P \right)$ thì chúng ta tìm một đường thẳng $b$ vuông góc với mặt phẳng $\left( P \right).\;$Khi đó, mặt phẳng $\left( \alpha  \right)$ sẽ song song hoặc chứa đường thẳng $b$.

    Ví dụ 1. Cho lăng trụ đứng $ABC.A’B’C’$ có đáy là tam giác nhọn$.$ Mặt phẳng $\left( P \right)$ đi qua $A$ và vuông góc với $A’C$. Biết rằng $CC’ > AC,$ hãy dựng thiết diện của lăng trụ khi cắt bởi mặt phẳng $\left( P \right)$.

    thiet dien vuong goc

    Hướng dẫn. 

    • Kẻ đường cao $BH$ của tam giác $ABC$ thì dễ thấy $BH$ vuông góc với $\left( {ACC’A’} \right).$ Do đó $BH$ vuông góc với $CA’$. Mà $\left( P \right)$ cũng vuông góc với $CA’$ nên suy ra $BH$ song song hoặc nằm trong $\left( P \right)$. Dễ thấy khả năng $BH$ nằm trong mặt phẳng $\left( P \right)$ không xảy ra, vì khi đó $AH$ vuông góc với $A’C$, đây là điều vô lý.
    • Trong mặt phẳng $\left( {ACC’A’} \right)$ kẻ đường thẳng vuông góc với $A’C$, đường thẳng này cắt $CC’$ tại $F$. Điểm $F$ nằm trong đoạn $CC’$, vì $CC’ > AC.$
    • Qua $H$ kẻ đường thẳng song song với $AA’,$ nó cắt $AF$ tại $K$. Từ $K$ kẻ đường thẳng song song với $BH,$ đường thẳng này cắt $BB’$ tại $E.$
    • Thiết diện cần tìm là tam giác $AEF.$

    Ví dụ 2. Cho lăng trụ đứng $ABC.A’B’C’$ có đáy là tam giác nhọn$.$ Mặt phẳng $\left( P \right)$ đi qua $B$ và vuông góc với $A’C$. Biết rằng $CC’ > AC,$ hãy dựng thiết diện của lăng trụ khi cắt bởi mặt phẳng $\left( P \right)$.

    Chuyên đề thiết diện trong hình học không gian 15

    Hướng dẫn. Kẻ đường cao $BH$ của tam giác $ABC$ thì dễ thấy $BH$ vuông góc với $\left( {ACC’A’} \right).$ Do đó $BH$ vuông góc với $CA’$. Mà $\left( P \right)$ chứa $B$ và vuông góc với $CA’$ nên suy ra $BH$ nằm trong mặt phẳng $\left( P \right)$.

    Qua $H$, kẻ đường thẳng $d$ vuông góc với $A’C$. Lúc này có 2 trường hợp có thể xảy ra:

    • Đường thẳng $d$ cắt $CC’$ tại $K$ nằm trong đoạn $CC’$ thì thiết diện là tam giác $BHK$.
    • Đường thẳng $d$ cắt $CC’$ tại $K$ nằm ngoài đoạn $CC’$ và cắt cạnh $A’C’$ tại $M$. Nối $BK$ cắt $B’C’$ tại $N$. Thiết diện là hình thang $BHMN.$

    Ví dụ 3. Hình chóp $S.ABCD$ có đáy là hình vuông, cạnh $SA$ vuông góc với đáy $\left( {ABCD} \right).$ Gọi $\left( P \right)$ là mặt phẳng đi qua $A$ và vuông góc với $SC$. Xác định thiết diện của hình chóp và mặt phẳng $\left( P \right).$

    Chuyên đề thiết diện trong hình học không gian 16

    Hướng dẫn.

    • Gọi $H,K,I$ lần lượt là hình chiếu vuông góc của $A$ lên các cạnh $SB,SC,SD$.
    • Ta có $AK$ vuông góc với $SC$ mà mặt phẳng $\left( P \right)$ chứa $A$ và vuông góc với $SC$ nên suy ra $AK$ nằm trong mặt phẳng $\left( P \right)$.
    • Chứng minh được $AH$ vuông góc với $\left( {SBC} \right)$ nên suy ra $AH \bot SC$. Mà $\left( P \right) \bot SC$, nên suy ra $AH$ cũng nằm trong mặt phẳng $\left( P \right)$.
    • Chứng minh tương tự có $AI$ cũng nằm trong mặt phẳng $\left( P \right)$.
    • Thiết diện là tứ giác $AHKI.$

    Ví dụ 4. Hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, cạnh $SA = a\sqrt 2 $ và vuông góc với đáy. Dựng đường cao $AH$ của tam giác $SAB$. Chứng minh tỉ số $\frac{{SH}}{{SB}} = \frac{2}{3}$. Gọi $\left( P \right)$ là mặt phẳng qua $A$ và vuông góc với $SB$. Mặt phẳng $\left( P \right)$ cắt hình chóp theo thiết diện là hình gì? Tính diện tích thiết diện.

    Chuyên đề thiết diện trong hình học không gian 17

    Hướng dẫn.

    • Chứng minh được $CB$ vuông góc với $\left( {SAB} \right)$ nên suy ra $CB$ vuông góc với $SB$.
    • Mà $\left( P \right)$ vuông góc với $SB$ nên suy ra $CB$ song song với $\left( P \right),CB$ không thể nằm trong mặt phẳng $\left( P \right)$ vì khi đó $A,B,C,D$ đồng phẳng.
    • Qua $H$ kẻ đường thẳng song song với $CB$, nó cắt $SC$ tại $K.$
    • Thiết diện là hình thang $AHKD,$ diện tích bằng $\frac{{5{a^2}\sqrt 6 }}{{18}}$.

    Ví dụ 5. Hình chóp $S.ABCD$ có đáy là hình thang vuông tại $A$ và $B$ với $AB = BC = a,\;AD = 2a$. Cạnh $SA = 2a$ và vuông góc với đáy $\left( {ABCD} \right).$ Gọi $M$ là một điểm trên cạnh $AB$ sao cho $AM = x$ với$\;0\; < \;x\; < \;a$. Giả sử mặt phẳng $\left( P \right)$ là mặt phẳng qua $M$ đồng thời vuông góc với $AB$. Xác định thiết diện của hình chóp với mặt phẳng $\left( P \right)$, thiết diện là hình gì? Tính diện tích thiết diện theo $a$ và $x$.

    Chuyên đề thiết diện trong hình học không gian 18

    Hướng dẫn. Vì $\left( P \right)$ và $SA$ cùng vuông góc với $AB$ nên suy ra $SA$ song song với $\left( P \right).$ Qua $M$ kẻ các đường thẳng song song với $SA,AD$, chúng cắt $SB,CD$ lần lượt tại $M$ và $Q$. Qua $N$ kẻ đường thẳng song song với $AD,$ nó cắt $SC$ tại $P$.

    Thiết diện là hình thang vuông $MNPQ$ có diện tích bằng $2a\left( {a – x} \right)$.

    Ví dụ 6. Hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Cạnh $SA = 2a$ và vuông góc với đáy. Mặt phẳng $\left( P \right)$ qua $B$ và vuông góc với $SC$. Tìm thiết diện của hình chóp với mặt phẳng $\left( P \right)$ và tính diện tích của thiết diện này.

    Chuyên đề thiết diện trong hình học không gian 19

    Hướng dẫn.

    • Gọi $H$ là trung điểm $AC$ thì vì tam giác $ABC$ đều nên có $BH \bot AC$. Mà $BH \bot SA$ nên suy ra $BH \bot \left( {SAC} \right).$
    • Suy ra $BH \bot SC$, tức là $BH$ nằm trong mặt phẳng $\left( P \right).$
    • Qua $H$ kẻ đường thẳng vuông góc với $SC,$ nó cắt $SC$ tại $K$.
    • Thiết diện cần tìm là tam giác $BHK$ vuông tại $H$. Dễ dàng có $BH = \frac{{a\sqrt 3 }}{2}$. Từ tam giác đồng dạng $SAC$ và $HKC$ tính được $HK$ và suy ra diện tích tam giác $BHK$ bằng $\frac{{{a^2}\sqrt {15} }}{{20}}$.

    Ví dụ 7. Hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, cạnh $AB = a$. Cạnh $SA = a\sqrt 3 $ và vuông góc với đáy. Lấy $M$ là một điểm tuỳ ý trên cạnh $AB$, đặt $AM\; = \;x$ với $0\; < \;x\; < \;a.$ Gọi $\left( P \right)$ là mặt phẳng qua $M$ và vuông góc với $AB$. Xác định thiết diện của hình chóp và mặt phẳng$\;\left( P \right)$. Tính diện tích của thiết diện đó theo $a$ và $x$, tìm $x$ để diện tích thiết diện có giá trị lớn nhất.

    Chuyên đề thiết diện trong hình học không gian 20

    Hướng dẫn.

    • Mặt phẳng $\left( P \right)$ chính là mặt phẳng đi qua $M$ và song song với $SA,BC$.
    • Qua $M$ kẻ các đường thẳng song song với $SA,BC$, chúng cắt $SB,AC$ lần lượt tại $N,Q$.
    • Qua $N$ kẻ đường thẳng song song với $BC$, nó cắt $SC$ tại $P$.
    • Thiết diện là hình chữ nhật $MNPQ$ nên diện tích được tính bởi công thức $$s = MN \times MP$$
    • Vì $MN\parallel SA$ nên có $\frac{{MN}}{{SA}} = \frac{{MB}}{{AB}}$ từ đó tính được $MN = \sqrt 3 \left( {a – x} \right)$. Làm tương tự, cũng tính được $MP = x$ và suy ra diện tích thiết diện là $s = \sqrt 3 x\left( {a – x} \right)$. Sử dụng bất đẳng thức Cauchy, chúng ta có $$\sqrt {x\left( {a – x} \right)}  \le \frac{{x + a – x}}{2} = \frac{a}{2}\;$$
    • Từ đó suy ra diện tích lớn nhất là $\frac{{{a^2}\sqrt 3 }}{4}$ đạt được khi $x = \frac{a}{2}$.

    Link tải Chuyên đề thiết diện

    Quý thầy cô tải tại đây chuyen_de_thiet_dien

  • Giải và biện luận phương trình bậc 2

    Giải và biện luận phương trình bậc 2

    Giải và biện luận phương trình bậc 2

    Giải và biện luận phương trình bậc 2 là dạng toán quan trọng, không chỉ xuất hiện trong các đề thi học kì, đề thi HSG mà còn xuất hiện cả trong các bài tập Tin học, lập trình.

    Xem thêm: Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    1. Cách giải và biện luận phương trình bậc 2

    Để giải và biện luận phương trình bậc 2, chúng ta tính $\Delta$ và dựa vào đó để biện luận. Chú ý rằng, trong thực tế chúng ta thường gặp bài toán tổng quát: Giải và biện luận phương trình $ax^2+bx+c=0$ với hệ số $a$ có chứa tham số. Lúc đó, quy trình giải và biện luận như sau.

    Bài toán: Giải và biện luận phương trình $ax^2+bx+c=0$

    Chúng ta xét 2 trường hợp chính:

    • Trường hợp 1. Nếu $a=0$ thì phương trình $ax^2+bx+c=0$ trở thành $$bx+c=0$$ Đây chính là dạng phương trình bậc nhất $ax+b=0$ đã biết cách giải. Các em học sinh xem chi tiết tại Giải và biện luận phương trình ax+b=0
    • Trường hợp 2. Nếu $a\ne 0$ thì phương trình đã cho là phương trình bậc hai có: $$\Delta=b^2-4ac$$ Chúng ta lại xét tiếp 3 khả năng của $\Delta$:
      • $\Delta<0$: Phương trình vô nghiệm;
      • $\Delta=0$: Phương trình có một nghiệm $ x=\frac{-b}{2a}$, đôi khi ta còn gọi là nghiệm kép;
      • $\Delta>0$: Phương trình có hai nghiệm (phân biệt), đặt là $ x_1,x_2$ được tính bởi $$ x_1=\frac{-b-\sqrt{\Delta}}{2a}, x_2=\frac{-b+\sqrt{\Delta}}{2a}. $$

    Cuối cùng, chúng ta tổng hợp các trường hợp lại thành một kết luận chung.

    2. Ví dụ Giải và biện luận phương trình bậc 2

    Ví dụ 1. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$2x^2+3x+m-5=0$$

    Hướng dẫn. Chúng ta có có $ \Delta=3^2-4\cdot 2\cdot(m-5)=49-8m$. Do đó, có 3 trường hợp sau:

    • Trường hợp 1. Nếu $ \Delta <0 \Leftrightarrow m>\frac{49}{8}$ thì phương trình vô nghiệm.
    • Trường hợp 2. Nếu $ \Delta =0 \Leftrightarrow m=\frac{49}{8}$ thì phương trình có một nghiệm $ x=-\frac{3}{4}$.
    • Trường hợp 3. Nếu $ \Delta >0 \Leftrightarrow m<\frac{49}{8}$ thì phương trình có hai nghiệm phân biệt $$ x=\frac{-3\pm\sqrt{49-8m}}{4}.$$

    Ví dụ 2. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$x^2-x+m=0.$$

    Hướng dẫn. Chúng ta có $ \Delta=(-1)^2-4m=1-4m$ và xét 3 trường hợp:

    • Trường hợp 1. Nếu $ \Delta <0 \Leftrightarrow m>\frac{1}{4}$ thì phương trình vô nghiệm.
    • Trường hợp 2. Nếu $ \Delta =0 \Leftrightarrow m=\frac{1}{4}$ thì phương trình có một nghiệm $ x=-\frac{1}{2}$.
    • Trường hợp 3. Nếu $ \Delta >0 \Leftrightarrow m<\frac{1}{4}$ thì phương trình có hai nghiệm phân biệt $$ x=\frac{1\pm\sqrt{1-4m}}{2}.$$

    Ví dụ 3. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$(m-1)x^2+3x+5=0$$

    Hướng dẫn. Chúng ta xét hai trường hợp chính:

    • Trường hợp 1. Nếu $ m-1=0 \Leftrightarrow m=1$ thì phương trình đã cho trở thành $$ 0x^2+3x+5=0 \Leftrightarrow x=-\frac{5}{3} $$
    • Trường hợp 2. Nếu $ m-1\ne 0 \Leftrightarrow m\ne 1$ thì phương trình đã cho là phương trình bậc hai có $$ \Delta=3^2-4\cdot 5\cdot(m-1)=29-20m $$ Trường hợp này lại có 3 khả năng sau:
      • $ \Delta<0 \Leftrightarrow m>\frac{29}{20}$ thì phương trình vô nghiệm;
      • $ \Delta=0 \Leftrightarrow m=\frac{29}{20}$ thì phương trình có một nghiệm $ x=-\frac{3}{2(m-1)}=-\frac{10}{3}$;
      • $ \Delta>0 \Leftrightarrow m<\frac{29}{20}$ thì phương trình có 2 nghiệm phân biệt $ x=\frac{-3\pm \sqrt{29-20m}}{2(m-1)}$.

    Tóm lại, chúng ta có kết luận sau:

    • $ m>\frac{29}{20}$: Phương trình vô nghiệm;
    • $ m=\frac{29}{20}$ hoặc $ m=1$: Phương trình có một nghiệm;
    • $ m<\frac{29}{20}$ và $ m\ne 1$: Phương trình có 2 nghiệm phân biệt.

    Ví dụ 4. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$mx^2+2mx+m-4=0$$

    Hướng dẫn. Chúng ta xét hai trường hợp chính:

    • Trường hợp 1. Nếu $ m=0$ thì phương trình đã cho trở thành $$ 0x^2+0x-4=0$$ Phương trình này rõ ràng vô nghiệm.
    • Trường hợp 2. Nếu $ m\ne 0$ thì phương trình đã cho là phương trình bậc hai có $$ \Delta’=m^2-m(m-4)=4m. $$ Vì $ m\ne 0$ nên trường hợp này lại có 2 khả năng sau:
      • $ \Delta<0 \Leftrightarrow m<0$ thì phương trình vô nghiệm;
      • $ \Delta>0 \Leftrightarrow m>0$ thì phương trình có 2 nghiệm phân biệt $ x=\frac{-m\pm \sqrt{4m}}{m}$.

    Như vậy, chúng ta có kết luận sau:

    • $ m\leqslant 0$: Phương trình vô nghiệm;
    • $ m>0$: Phương trình có 2 nghiệm phân biệt.

    Ví dụ 5. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$(m^2-1)x^2+6(m-1)x+9=0$$

    Hướng dẫn. Chúng ta xét 2 trường hợp chính:

    • Trường hợp 1. Nếu $ m^2-1=0 \Leftrightarrow m=\pm 1$. Đến đây, có hai khả năng:
      • Nếu $ m=1$ thì phương trình đã cho trở thành $$ 0x^2+0x+9=0 $$ Phương trình này rõ ràng vô nghiệm.
      • Nếu $ m=-1$ thì phương trình đã cho trở thành $$ 0x^2-12x+9=0 $$ Phương trình này có nghiệm $ x=\frac{3}{4}$.
    • Trường hợp 2. Nếu $ m\ne \pm 1$ thì phương trình đã cho là phương trình bậc hai có $$ \Delta’=9(m-1)^2-9\cdot (m^2-1) =18-18m$$ Chúng ta lại thấy trường hợp này có 3 khả năng:
      • Nếu $ \Delta<0 \Leftrightarrow m>1$ thì phương trình vô nghiệm;
      • Nếu $ \Delta=0 \Leftrightarrow m=1$, khả năng này không xảy ra vì chúng ta đang xét trường hợp 2 có điều kiện là $ m\ne \pm 1;$
      • Nếu $ \Delta >0 \Leftrightarrow m<1$, phương trình có 2 nghiệm phân biệt $ x=-3(m-1)\pm\sqrt{18-18m}$.

    Tóm lại, chúng ta có kết luận sau:

    • Khi $ m \geqslant 1$: Phương trình vô nghiệm;
    • Khi $ m=-1$: Phương trình có một nghiệm;
    • Khi $ m<1$ và $ m\ne -1$: Phương trình có hai nghiệm phân biệt.

    Ví dụ 6. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$(m^2-4)x^2+3mx-6=0$$

    Hướng dẫn. Chúng ta

     

    Ví dụ 7. Tìm tất cả các giá trị thực của tham số $m$ để hai đồ thị hàm số $y = -x^2 – 2x + 3$ và $y = x^2 – m$ có điểm chung?

    Hướng dẫn. Hoành độ giao điểm của hai đồ thị hàm số $y = -x^2 – 2x + 3$ và $y = x^2 – m$ là nghiệm của phương trình $$y = -x^2 – 2x + 3= x^2 – m$$ Do đó, hai đồ thị hàm số có điểm chung khi và chỉ khi phương trình trên có nghiệm.

     

    3. Tìm điều kiện để phương trình có 3 nghiệm, 4 nghiệm…

    Ngoài việc biện luận phương trình bậc hai, chúng ta còn gặp một số phương trình quy về bậc 2. Cụ thể xin xem trong ví dụ sau:

    Ví dụ 1. Tìm điều kiện của $m$ để phương trình sau có 3 nghiệm phân biệt $$(x^2 – 3x + m)(x – 1) = 0$$

    Hướng dẫn. Phương trình đã cho tương đương với \begin{align} \left[\begin{array}{lr} x-1=0&(1)\\ x^2 – 3x + m=0&(2)
    \end{array}\right. \end{align}

    Rõ ràng rằng phương trình đã cho luôn có một nghiệm $x=1$. Do đó, phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt và khác $1$. Điều kiện cần và đủ là $$ \begin{cases} \Delta = 9-4m >0\\ 1^2-3+m\ne 0
    \end{cases} $$ Giải hệ này tìm được điều kiện $ m<\frac{9}{4}$ và $ m\ne 2.$

    Ví dụ 2. Tìm điều kiện của $m$ để phương trình sau có 3 nghiệm phân biệt $$x^3-3mx^2+2mx+m-1= 0$$

    Hướng dẫn. Chúng ta đoán được phương trình $x^3-3mx^2+2mx+m-1= 0$ có nghiệm $x=1$ nên phân tích phương trình đã cho thành $$\left( x-1\right) \left( x^{2}+\left( 1-3m\right) x-m+1\right) =0$$

    Do đó, phương trình đã cho tương đương với \begin{align} \left[\begin{array}{lr} x-1=0&(1)\\ x^{2}+\left( 1-3m\right) x-m+1=0&(2) \end{array}\right. \end{align} Do đó, phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt khác $1$. Điều kiện cần và đủ là $$ \begin{cases} \Delta = (1-3m)^2-4(1-m) >0\\ 1^2+(1-3m)-m+1\ne 0 \end{cases} $$ Giải hệ này tìm được điều kiện $ m<\frac{1-2\sqrt{7}}{9}$ hoặc $ m>\frac{1+2\sqrt{7}}{9}.$

    Ví dụ 3. Tìm điều kiện của $m$ để phương trình sau có 2 nghiệm phân biệt $$\frac{x^2-2x+m}{x-3} = 0$$

    Hướng dẫn. Ta có điều kiện xác định của phương trình là $x\ne 3$. Với điều kiện đó, phương trình đã cho tương đương với $$x^2-2x+m=0(*)$$ Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt và thỏa mãn điều kiện, tức phải khác $3$. Điều kiện cần và đủ là $$ \begin{cases} \Delta = 2^2-4m >0\\ 3^2-2\cdot 3+m\ne 0 \end{cases} $$ Từ đó tìm được đáp số

    Ví dụ 4. Tìm điều kiện của $m$ để phương trình sau có 2 nghiệm phân biệt $$\frac{mx^2-2(m-1)x+m}{\sqrt{x – 2}} = 0$$

    Hướng dẫn. Ta có điều kiện xác định là $x>2$. Cần tìm điều kiện để phương trình $mx^2-2(m-1)x+m=0$ có 2 nghiệm phân biệt và thỏa mãn điều kiện $x>2$.

    Ví dụ 5. Tìm điều kiện của $m$ để phương trình sau có 4 nghiệm phân biệt $$x^4-3mx^2+5= 0$$

    Hướng dẫn. Ta đặt $t=x^2$ thì có điều kiện của $t$ là $t>0$. Phương trình đã cho trở thành phương trình bậc 2 ẩn $t$ $$t^2-3mt+5$$ Nhận thấy rằng với mỗi nghiệm $t>0$ thì tìm được 2 nghiệm $x$ là $\pm\sqrt{t}$. Nên, phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình ẩn $t$ có 2 nghiệm $t$ phân biệt và dương. Điều kiện cần và đủ là $$ \begin{cases} \Delta >0\\ S>0\\ P>0 \end{cases} $$

  • Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    1. Phương trình bậc hai là gì?

    Phương trình bậc hai (ẩn $x$) là phương trình có dạng $$ax^2+bx=0$$ trong đó $a\ne 0$.

    Cách giải phương trình bậc 2. Chúng ta tính đại lượng sau (đặt là $\Delta$) $$\Delta=b^2-4ac$$ Khi đó, tùy vào giá trị dương, âm, bằng không của $\Delta$ mà chúng ta có kết luận về nghiệm của phương trình bậc 2.

    • $\Delta<0$: Phương trình vô nghiệm;
    • $\Delta=0$: Phương trình có một nghiệm $ x=\frac{-b}{2a}$, đôi khi ta còn gọi là nghiệm kép;
    • $\Delta>0$: Phương trình có hai nghiệm (phân biệt), đặt là $ x_1,x_2$ được tính bởi $$ x_1=\frac{-b-\sqrt{\Delta}}{2a}, x_2=\frac{-b+\sqrt{\Delta}}{2a}. $$

    Xem thêm:

    Ví dụ 1. Giải phương trình $x^2-4x-6=0$

    Chúng ta có các hệ số $a=1,b=-4,c=-6$ nên tính được $$ \Delta=(-4)^2-4\cdot 1\cdot (-6)=40 $$ Vì $ 40>0$ nên phương trình có hai nghiệm phân biệt $ \frac{-(-4)+\sqrt{40}}{2}$ và $ \frac{-(-4)-\sqrt{40}}{2}$. Rút gọn hai nghiệm này được $ 2+\sqrt{10}$ và $ 2-\sqrt{10}$.

    Ví dụ 2. Giải phương trình $x^2-3x+6=0$

    Chúng ta có các hệ số $a=1,b=3,c=6$ nên tính được $$ \Delta=3^2-4\cdot 1\cdot 6=-15 $$ Vì $ -15<0$ nên phương trình vô nghiệm.

    Ví dụ 3. Giải phương trình $x^2-2x+1=0$

    Chúng ta có các hệ số $a=1,b=-2,c=1$ nên tính được $$ \Delta=(-2)^2-4\cdot 1\cdot 1=0 $$ nên phương trình có một nghiệm là $x=\frac{-(-2)}{2}=1$.

    Lưu ý, nếu hệ số $b$ chẵn, tức là có dạng $b=2b’$ thì có thể tính $\Delta’=b’^2-ac$ thay cho $\Delta$. Lúc đó, công thức nghiệm là $\frac{-b’\pm\sqrt{\Delta’}}{a}$.

    Ví dụ 4. Giải phương trình $x^2-4x-6=0$

    Chúng ta có các hệ số $a=1,b=-4,c=-6$. Nhận thấy $b=2\cdot(-2)$ nên tính $$ \Delta’=(-2)^2-\cdot 1\cdot (-6)=10 $$ Vì $ 10>0$ nên phương trình có hai nghiệm phân biệt $ \frac{-(-2)+\sqrt{10}}{1}$ và $ \frac{-(-2)-\sqrt{10}}{1}$. Rút gọn hai nghiệm này được $ 2+\sqrt{10}$ và $ 2-\sqrt{10}$, chính là hai nghiệm ở ví dụ 1.

    2. Phương trình bậc hai có nghiệm khi nào?

    Như vậy, phương trình bậc hai có nghiệm khi và chỉ khi $$\Delta \geqslant 0$$

    Lúc đó, chúng ta có định lý Viète như sau $$ \begin{cases} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a} \end{cases} $$

    Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có nghiệm $$x^2-3x+m-5=0$$ Phương trình đã cho có nghiệm khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) \geqslant 0\\ \Leftrightarrow & 29-4m \geqslant 0\\ \Leftrightarrow & m \leqslant \frac{29}{4} \end{align}

    3. Phương trình bậc hai có 2 nghiệm (phân biệt) khi nào?

    Phương trình bậc hai có 2 nghiệm (phân biệt) khi và chỉ khi $$\Delta >0.$$

    Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có 2 nghiệm phân biệt $$x^2-3x+m-5=0$$ Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) > 0\\ \Leftrightarrow & 29-4m > 0\\ \Leftrightarrow & m <\frac{29}{4} \end{align}

    4. Phương trình bậc hai vô nghiệm khi nào?

    Phương trình bậc hai có 2 nghiệm (phân biệt) khi và chỉ khi $$\Delta <0.$$

    Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có 2 nghiệm phân biệt $$x^2-3x+m-5=0$$ Phương trình đã cho vô nghiệm khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) < 0\\ \Leftrightarrow & 29-4m < 0\\ \Leftrightarrow & m >\frac{29}{4} \end{align}

    5. Phương trình bậc hai có 2 nghiệm dương khi nào?

    Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) dương khi và chỉ khi $$ \begin{cases} \Delta >0\\
    x_1+x_2=\frac{-b}{a}>0\\ x_1 \cdot x_2 =\frac{c}{a}>0 \end{cases} $$

    6. Phương trình bậc hai có 2 nghiệm âm khi nào?

    Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) âm khi và chỉ khi $$ \begin{cases} \Delta >0\\
    x_1+x_2=\frac{-b}{a}<0\\ x_1 \cdot x_2 =\frac{c}{a}>0 \end{cases} $$

    7. Phương trình bậc hai có hai nghiệm trái dấu?

    Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) trái dấu khi và chỉ khi $$  x_1 \cdot x_2 =\frac{c}{a}<0 $$ hoặc đơn giản hơn là $$ac<0.$$

    8. Phương trình bậc hai có hai nghiệm lớn hơn một số, nhỏ hơn một số cho trước (định lý đảo)

    Phương trình bậc hai $f(x)=ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) $ x_1,x_2$ (giả sử $ x_1<x_2$) và thỏa mãn yêu cầu

    • $ x_1<\alpha <x_2$: điều kiện cần và đủ là $ a\cdot f(\alpha) <0$
    • $ x_1< x_2<\alpha $: điều kiện cần và đủ là $ \begin{cases} \Delta >0\\ a\cdot f(\alpha) >0\\ \frac{x_1+x_2}{2} <\alpha
      \end{cases}$
    • $ \alpha <x_1< x_2 $: điều kiện cần và đủ là $ \begin{cases} \Delta >0\\ a\cdot f(\alpha) >0\\ \frac{x_1+x_2}{2} >\alpha \end{cases}$
  • Phương trình chứa trị tuyệt đối

    Phương trình chứa trị tuyệt đối

    Phương trình chứa trị tuyệt đối

    Để giải phương trình chứa trị tuyệt đối chúng ta có thể sử dụng hai cách chính là bình phương hai vế để khử dấu giá trị tuyệt đối, hoặc sử dụng định nghĩa giá trị tuyệt đối để xét các trường hợp (có thể lập bảng để việc phá dấu giá trị tuyệt đối được dễ dàng hơn).

    Xem thêm:

    1. Cách giải phương trình chứa trị tuyệt đối

    Trước tiên, chúng ta nhắc lại định nghĩa giá trị tuyệt đối của một số: $$ |a|=\begin{cases} a& \text{nếu } x \geqslant 0\\ -a& \text{nếu } x <0 \end{cases} $$ Từ đó, chúng ta có cách giải 2 dạng phương trình chứa trị tuyệt đối như sau:

    1. $|A|=|B| \Leftrightarrow A=\pm B$;
    2. $ |A|= B$ ta xét hai khả năng:
      • nếu $ B <0$ thì phương trình vô nghiệm;
      • nếu $ B <0$ thì phương trình tương đương với $ A=\pm B$.

    Nếu $ B$ là một biểu thức chứa $ x$ thì phương trình đã cho tương đương với $$ \begin{cases} B \geqslant 0\\ A=\pm B
    \end{cases} $$ Để dễ cho việc kết hợp nghiệm, chúng ta thường tách thành hai trường hợp, hoặc hai hệ như sau: $$ |A|= B \Leftrightarrow \left[ \begin{array}{c} \begin{cases} B \geqslant 0\\ A=B \end{cases}\\ \begin{cases} B \geqslant 0\\ A=-B \end{cases} \end{array}\right. $$

    2. Ví dụ giải phương trình chứa trị tuyệt đối

    Ví dụ 1. Giải phương trình $$|x-3|=|2x+1|.$$

    Hướng dẫn. Phương trình đã cho tương đương với $$ \left[\begin{array}{l} x-3=2x+1\\ x-3=-(2x+1)\end{array}\right.
    \Leftrightarrow \left[\begin{array}{l}x=-4\\x=2\end{array}\right.$$

    Ví dụ 2. Giải phương trình $$|x-3|=|x^2+3x-1|.$$

    Hướng dẫn. Phương trình đã cho tương đương với \begin{align}
    &\left[\begin{array}{l} x-3=x^2+3x-1\\ x-3=-(x^2+3x-1)\end{array}\right.\\
    \Leftrightarrow & \left[\begin{array}{l} x^2+2x+2=0\text{ (vô nghiệm)}\\ x^2+4x-4=0\end{array}\right.\\
    \Leftrightarrow & x=-2\pm 2\sqrt{2}.
    \end{align}

    Ví dụ 3. Giải phương trình $$|x+5|=3x+10.$$

    Hướng dẫn. Cách thứ nhất, chúng ta chia hai trường hợp:

    • Trường hợp 1. Nếu $ x+5 \geqslant 0 \Leftrightarrow x \geqslant -5$ thì phương trình đã cho trở thành $$ x+5=3x+10. $$
      Giải phương trình này, tìm được $ x=-\frac{5}{2}$. Nghiệm này thỏa mãn điều kiện $ x \geqslant -5$ nên nhận.
    • Trường hợp 2. Nếu $ x+5 < 0 \Leftrightarrow x < -5$ thì phương trình đã cho trở thành $$ -x-5=3x+10. $$ Giải phương trình này, tìm được $ x=-\frac{15}{4}$. Nghiệm này không thỏa mãn điều kiện $ x \geqslant -5$ nên loại.

    Kết luận, phương trình đã cho có nghiệm duy nhất $ x=-\frac{5}{2}.$

    Cách thứ hai, chúng ta biến đổi tương đương phương trình đã cho tương đương với hệ: \begin{align} &\begin{cases} 3x+10 \geqslant 0\\ \left[\begin{array}{l} x+5=3x+10\\x+5=-(3x+10)\end{array}\right. \end{cases} \\
    \Leftrightarrow & \begin{cases} x\geqslant \frac{-10}{3}\\ \left[\begin{array}{l} x=-\frac{5}{2}\\x=-\frac{15}{4}\end{array}\right. \end{cases} \\
    \Leftrightarrow & x=-\frac{5}{2}. \end{align}

    Ví dụ 4. Giải phương trình $$|3x – 2| = x^2+ 2x + 3.$$

    Hướng dẫn. Chúng ta xét hai trường hợp:

    • Trường hợp 1. Khi $3x-2 \geqslant 0 \Leftrightarrow x \geqslant \frac{2}{3}$ thì phương trình đã cho trở thành $$3x-2 =x^2+2x+3.$$ Phương trình này vô nghiệm.
    • Trường hợp 2. Khi $3x-2 < 0 \Leftrightarrow x < \frac{2}{3}$  thì phương trình đã cho trở thành $$-3x+2=x^2+2x+3.$$ Giải phương trình này, tìm được $x=\frac{-5\pm \sqrt{21}}{2}$. So sánh với điều kiện $x < \frac{2}{3}$ thấy cả hai nghiệm đều thỏa mãn.

    Kết luận. Phương trình đã cho có hai nghiệm là $\frac{-5\pm \sqrt{21}}{2}$.

    Ví dụ 5. Giải phương trình $$ \frac{x-1}{2x-3}=\frac{-3x+1}{|x+1|}. $$

    Hướng dẫn. Điều kiện $x\ne -1, x\ne \frac{3}{2}$. Chúng ta xét hai trường hợp:

    • Trường hợp 1. Nếu $x+1>0 \Leftrightarrow x>-1$ thì phương trình đã cho trở thành $$ \frac{x-1}{2x-3}=\frac{-3x+1}{x+1}. $$ Biến đổi phương trình này được $$\frac{7x^{2}-11x+2}{-2x^{2}+x+3}=0.$$ Giải phương trình này được nghiệm $x=\frac{11\pm \sqrt{65}}{14}$. So sánh thấy cả hai đều thỏa mãn các điều kiện $x\ne -1, x\ne \frac{3}{2}$ và $x>-1$ nên nhận cả hai nghiệm.
    • Trường hợp 2. Nếu $x+1<0 \Leftrightarrow x<-1$ thì phương trình đã cho trở thành $$ \frac{x-1}{2x-3}=\frac{-3x+1}{-x-1}. $$ Giải phương trình này được nghiệm $x=\frac{11\pm \sqrt{41}}{10}$. So sánh thấy cả hai không thỏa mãn điều kiện $x<-1$ nên loại cả hai nghiệm.

    Kết luận, tập nghiệm của phương trình đã cho là $S=\{\frac{11\pm \sqrt{65}}{14}\}.$

    Ví dụ 6. Giải phương trình chứa dấu giá trị tuyệt đối sau: $$ x^2+4x-3|x+2|+4=0. $$

    Hướng dẫn. Chúng ta xét hai trường hợp:

    • Trường hợp 1. Khi $x+2\geqslant 0 \Leftrightarrow x>\geqslant -2$ thì phương trình đã cho trở thành $$ x^2+4x-3(x+2)+4=0.$$ Giải phương trình này được nghiệm $x=-2,x=1$. Cả hai đều thỏa mãn điều kiện $x \geqslant -2$ nên nhận cả hai nghiệm.
    • Trường hợp 2. Khi $x+2 <0 \Leftrightarrow x> <-2$ thì phương trình đã cho trở thành $$ x^2+4x+3(x+2)+4=0.$$ Giải phương trình này được nghiệm $x=-2,x=-5$. So sánh điều kiện $x <-2$ thì $x=-2$ bị loại, $x=-5$ thỏa mãn.

    Kết luận, tập nghiệm của phương trình đã cho là $S=\{-5,-2,1\}$.

    Đối với phương trình chứa nhiều dấu giá trị tuyệt đối mà không rơi vào các dạng trên, chúng ta thường lập bảng khử dấu giá trị tuyệt đối như sau.

    Ví dụ 7. Giải phương trình chứa dấu giá trị tuyệt đối sau: $$ |x+1|+|x-1|=4. $$

    Hướng dẫn. 

    Ta lập bảng như sau, gọi là bảng khử dấu giá trị tuyệt đối hoặc bảng phá dấu giá trị tuyệt đối:

    giải phương trình chứa trị tuyệt đối băng cách lập bảng khử phá dấu giá trị tuyệt đối

    Từ đó, dễ dàng chia thành ba trường hợp:

    • Trường hợp 1. Khi $x<-1$ thì phương trình đã cho trở thành $$-2x=4 \Leftrightarrow x=-2.$$ Rõ ràng nghiệm này thỏa mãn điều kiện $x<-1$ nên nhận.
    • Trường hợp 2. Khi $-1 \leqslant   x<1$ thì phương trình đã cho trở thành $$2=4.$$ Phương trình này vô nghiệm,
    • Trường hợp 3. Khi $1 \leqslant x$ thì phương trình đã cho trở thành $$2x=4 \Leftrightarrow x=2.$$ Nghiệm này cũng thỏa mãn điều kiện $x \geqslant 1$ nên nhận.

    Tóm lại, phương trình đã cho có hai nghiệm $x=\pm 2$.

    Ví dụ 8. Giải phương trình chứa trị tuyệt đối: $$ |x+4|-2|x+5|=-7. $$

    Hướng dẫn. Lập bảng xét dấu tương tự ví dụ 7, đáp số $x=1,x=-13$.

  • Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM

    Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM

    Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM

    O2 Education xin giới thiệu tới Quý thầy cô và các em học sinh Bộ đề thi học kì 1 toán 10 trường phổ thông năng khiếu TP HCM. Bộ đề thi HK1 Toán 10 gồm các đề từ năm 2008  đến năm 2013, thời gian làm bài mỗi đề là 90 phút.

    Xem thêm Đề thi giữa học kỳ I Toán 10 Xuân Trường B năm 2017

    Đề thi học kì 1 Toán 10 PTNK năm 2008 – 2009

    Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM 21 Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM 22 Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM 23 Bộ đề thi học kì 1 Toán 10 trường PTNK TP HCM 24

  • TOÁN 4: DẠNG TOÁN TÌM PHÂN SỐ CỦA MỘT SỐ

    TOÁN 4: DẠNG TOÁN TÌM PHÂN SỐ CỦA MỘT SỐ

    DẠNG TOÁN TÌM PHÂN SỐ CỦA MỘT SỐ

    1. Cách tìm phân số của một số

    Quy tắc tìm phân số của một số: Muốn tìm giá trị $\frac{m}{n}$ của một số $x$ cho trước, ta lấy $x$ nhân với $\frac{m}{n}$.

    Muốn tìm phân số của một số ta nhân số đó với phân số đã cho.

    Chú ý rằng, số đã cho đó có thể viết dưới dạng phân số với mẫu số là 1 và ta thực hiện phép nhân như nhân hai phân số với nhau.

    Xem thêm: Tìm một số biết giá trị một phân số của số đó

    Ví dụ 1. Tính $\frac{2}{7}$ của $21$.

    Hướng dẫn. $\frac{2}{7}$ của $21$ là $$\frac{2}{7}\times 21 = 6.$$

    Ví dụ 2. Một hộp kẹo có 40 chiếc kẹo. Hỏi $\frac{3}{4}$ hộp kẹo có bao nhiêu chiếc?

    Hướng dẫn. Số chiếc kẹo có trong $\frac{3}{4}$ hộp kẹo là $$\frac{3}{4} \times 40 =30.$$

    Ví dụ 3. Lớp 6A có 50 học sinh. Trong đó, có $\frac{3}{5}$ số học sinh thích chơi đá bóng. 80% số học sinh thích chơi đá cầu và $\frac{7}{10}$ số học sinh thích chơi cầu lông. Hỏi lớp 6A có:

    • Bao nhiêu học sinh thích chơi đá bóng ?
    • Bao nhiêu học sinh thích chơi đá cầu ?
    • Bao nhiêu học sinh thích chơi cầu lông ?

    Hướng dẫn.

    • Số học sinh lớp 6A thích chơi đá bóng là: $50\times\frac{3}{5}= 30$ (học sinh);
    • Số học sinh lớp 6A thích chơi đá cầu là: $50\times \frac{80}{100} = 40$ (học sinh);
    • Số học sinh lớp 6A thích chơi đá bóng là: $50\times \frac{7}{10} = 35$ (học sinh).

    2. Bài tập tìm phân số của một số

    Bài 1. Mẹ 49 tuổi, tuổi con bằng 2/7 tuổi mẹ. Hỏi con bao nhiêu tuổi?

    Bài 2. Mẹ 36 tuổi, tuổi con bằng 1/6 tuổi mẹ hỏi bao nhiêu năm nữa tuổi con bằng 1/3 tuổi mẹ?

    Bài 3. Bác An có một thửa ruộng. Trên thửa ruộng ấy bác dành 1/2 diện tích để trồng rau. 1/3 Để đào ao phần còn lại dành làm đường đi. Biết diện tích làm đường đi là 30m2 . Tính diện tích thửa ruộng.

    Bài 4. Trong đợt kiểm tra học kì vừa qua ở khối 4 thầy giáo nhận thấy. 1/2 Số học sinh đạt điểm giỏi, 1/3 số học sinh đạt điểm khá, 1/10 số học sinh đạt trung bình còn lại là số học sinh đạt điểm yếu. Tính số học sinh đạt điểm yếu biết số học sinh giỏi là 45 em.

    Hướng dẫn. Để tìm được số học sinh yếu thì cần tìm phân số chỉ số học sinh yếu. Cần biết số học sinh của khối dựa vào số học sinh giỏi.

    Bài 5. Một cửa hàng nhận về một số hộp xà phòng. Người bán hàng để lại 1/10 số hộp bầy ở quầy, còn lại đem cất vào tủ quầy. Sau khi bán 4 hộp ở quầy người đo nhận thấy số hộp xà phòng cất đi gấp 15 lần số hộp xà phòng còn lại ở quầy. Tính số hộp xà phòng cửa hàng đã nhập về.

    Nhận xét : ở đây ta nhận thấy số hộp xà phòng cất đi không thay đổi vì vậy cần bám vào đó bằng cách lấy số hộp xà phòng cất đi làm mẫu số. tìm phân số chỉ 4 hộp xà phòng.

    Bài 6. Một cửa hàng nhận về một số xe đạp. Người bán hàng để lại 1/6 số xe đạp bầy bán, còn lại đem cất vào kho. Sau khi bán 5 xe đạp ở quầy người đo nhận thấy số xe đạp cất đi gấp 10 lần số xe đạp còn lại ở quầy. Tính số xe đạp cửa hàng đã nhập.

    Bài 7. Trong đợt hưởng ứng phát động trồng cây đầu năm, số cây lớp 5a trồng bằng 3/4 số cây lớp 5b. Sau khi nhẩm tính thầy giáo nhận thấy nếu lớp 5b trồng giảm đi 5 cây thì số cây lúc này của lớp 5a sẽ bằng 6/7 số cây của lớp 5b.

    Sau khi thầy giáo nói như vậy bạn Huy đã nhẩm tính ngay được số cây cả 2 lớp trồng được. Em có tính được như bạn không ?

    Bài 8. Một giá sách có 2 ngăn. Số sách ở ngăn dưới gấp 3 lần số sách ở ngăn trên. Nếu chuyển 2 quyển từ ngăn trên xuống ngăn dưới thì số sách ở ngăn dưới sẽ gấp 4 lấn số sách ở ngăn trên. Tính số sách ở mỗi ngăn.

    Bài 9. Hai kho có 360 tấn thóc. Nếu lấy 1/3 số thóc ở kho thứ nhất và 2/ 5 số thóc ở kho thứ 2 thì số thóc còn lại ở 2 kho bằng nhau.

    1. Tính số thóc lúc đầu mỗi kho.
    2. Hỏi đã lấy ra ở mỗi kho bao nhiêu tấn thóc.

    Bài 10. Hai bể chứa 4500 lít nước. người ta tháo ở bể thứ nhất 2/5 bể. Tháo ở bể thứ hai là 1/4 bể thì só nước còn lại ở hai bể bằng nhau. Hỏi mỗi bể chứa bao nhiêu lít nước.

    Bài 11. Hai bể chứa 4500 lít nước. người ta tháo ở bể thứ nhất 500 lít. Tháo ở bể thứ hai là 1000 lít thì số nước còn lại ở hai bể bằng nhau. Hỏi mỗi bể chứa bao nhiêu lít nước.