Tag: phương trình

  • Toán 9 – Giải bài toán bằng cách lập phương trình

    Toán 9 – Giải bài toán bằng cách lập phương trình

    Dưới đây, O2 Education xin hướng dẫn cách giải bài toán bằng cách lập phương trình lớp 9. Bao gồm các dạng bài về chuyển động, hình học, năng suất, tính tuổi, thêm bớt số. Mời các em tham khảo thêm Giải bài toán bằng cách lập hệ phương trình.

    1. Các bước giải bài toán bằng cách lập phương trình

    Bước 1: Đọc hiểu đề bài để lập phương trình

    • Xác định đại lượng cần tìm, đại lượng đã cho và mối quan hệ giữa các đại lượng;
    • Chọn ẩn phù hợp, tìm điều kiện cho ẩn số đó;
    • Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết (chú ý cần đưa về sử dụng thống nhất cùng một đơn vị);
    • Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

    Bước 2: Giải phương trình vừa lập

    Bước 3: Kiểm tra và kết luận

    • Kiểm tra nghiệm nào thoả mãn điều kiện của ẩn
    • Trả lời câu hỏi của đề bài

    Khó khăn bạn thường gặp phải khi giải bài toán bằng cách lập phương trình là bước 1. Bạn không biết biểu diễn các đại lượng chưa biết theo ẩn và theo các đại lượng đã biết khác.

    2. Các dạng toán giải bằng cách lập phương trình

    Các bài toán giải bằng cách lập phương trình có thể chia thành các dạng sau:

    • Dạng toán chuyển động. Mời các em xem trong bài Giải bài toán chuyển động lớp 9
    • Dạng toán liên quan tới các kiến thức hình học.
    • Dạng toán năng suất (công việc làm chung, làm riêng; chảy chung, chảy riêng của vòi nước). Mời các em xem chi tiết trong bài Bài toán về năng suất
    • Dạng toán tìm số.
    • Dạng toán sử dụng các các kiến thức về %.
    • Dạng toán sử dụng các kiến thức vật lý, hóa học.

    3. Bài tập giải bằng cách lập phương trình

    Bài toán 21 (Dạng toán liên quan tới các kiến thức hình học)

    Tìm  hai cạnh của một tam giác vuông biết cạn huyền bằng 13 cm và tổng hai cạnh góc vuông bằng 17.

    Lời Giải :

    Gọi cạnh góc  vuông thứ nhất của tam giác là x (cm), (0< x < 17).

    Ta có cạnh góc vuông còn lại là: (17 – x), (cm).

    Vì cạnh huyền  của tam giác vuông là 13  do đó ta có phương trình:  x2 + (17 – x)2  = 132

    Giải PTBH: x2 – 17x + 60 = 0    ta được: x1 = 12, x2 = 5.

    Vậy độ dài các cạnh góc  vuông lần lượt là 12 cm, 5, cm.

    Bài toán 22 (Dạng toán liên quan tới các kiến thức hình học)

    Một khu vườn Hình chữ nhật có chu vi 280 m. Người ta làm  một lối đi xung quanh vườn (thuộc đất vườn) rộng 2 m, diện tích còn lại để trồng trọt là 4256 m2. Tính kích thước (các cạnh) của khu vườn đó

    Lời Giải :

    Gọi một cạnh của khu vườn là x, (m), x< 140.

    Ta có cạnh  còn lại của khu vườn là: (140 – x).

    Do lối xung quanh vườn rộng 2 m nên các kích thước các cạnh còn lại để trồng trọt là: (x – 4), (140 – x – 4) (m).

    Vì diện tích còn lại để trồng trọt là 4256 m2 do đó ta có phương trình: (x – 4). (140 – x – 4) = 4256.

    Giải PTBH: x2 – 140x + 4800 = 0    ta được x2  = 80, x2 = 60.    Vậy các cạnh của khu vườn HCN là 80 m, 60 m.

    Bài toán 23 (Dạng toán liên quan tới các kiến thức hình học)

    Một thửa ruộng hình chữ nhật có chu vi 250 m. Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng không đổi.

    Lời Giải :

    Gọi chiều rộng và chiều dài của thửa ruộng hình chữ nhật lần lượt là x và y, (m), (0< x< y < 125).

    Vì chu vi thửa ruộng hình chữ nhật là 250 m do đó ta có phương trình: x + y = 125.

    Vì chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng không đổi do đó ta có phương trình:

    1. x + $\frac{y}{3}$ = 125. Theo bài ra ta có hệ phương trình: $\left\{ \begin{align}

    & x+y=125 \\

    & 2x+\frac{y}{3}=125 \\

    \end{align} \right.$  , giải hệ phương trình ta được $\left\{ \begin{align}

    & x=50 \\

    & y=75 \\

    \end{align} \right.$

    Vậy dịên tích của thửa ruộng HCN là; 50. 75 = 3750 m2.

    Bài toán 24 (Dạng toán liên quan tới các kiến thức hình học)

    Cho một tam giác vuông. Khi ta tăng mỗi cạnh góc vuông lên 2 cm  thì diện tích tăng 17 cm2. Nếu giảm các cạnh góc vuông đi một cạnh đi 3 cm một cạn 1 cm thì diện tích sẽ giảm đi 11cm2. Tìm  các cạnh của tam giác vuông đó.

    Lời Giải :

    Gọi các cạnh của tam giác vuông lần lượt là x, y; (cm), x, y > 3.

    Vì khi tăng mỗi cạnh góc vuông lên 2 cm  thì diện tích tăng 17 cm2 do đó ta có phương trình:

    $\frac{1}{2}$ (x+ 2) (y + 2) =  $\frac{1}{2}$ xy + 17.

    Vì nếu giảm các cạnh góc vuông đi một cạnh đi 3 cm một cạn 1 cm thì diện tích sẽ giảm đi 11cm2 do đó ta có phương trình: $\frac{1}{2}$ (x – 3) (y – 1) =  $\frac{1}{2}$ xy – 11.

    Theo bài ra ta có hệ phương trình: $\left\{ \begin{align}

    & x+y=15 \\

    & x-3y=25 \\

    \end{align} \right.$ , giải hệ phương trình ta được: $\left\{ \begin{align}

    & x=10 \\

    & y=5 \\

    \end{align} \right.$

    Vậy ta có các cạnh của tam giác là: 5, 10, 5$\sqrt[{}]{5}$ (cm).

     

    Bài toán 34 (Dạng toán tìm số)

    Tìm hai số biết tổng bằng 19 và tổng các bình phương của chúng bằng 185.

    Lời Giải:

    Gọi số thứ nhất là x, (0< x<19).

    Ta có số thứ hai là (  19 – x).

    Vì tổng các bình phương của chúng bằng 185  do đó ta có phương trình: x2 + (19 – x)2 = 185.

    Giải PTBH: x2 – 19x + 88 = 0    được:  x1= 11, x2  = 9.

    Vậy hai số phải tìm là 11 và 9.

    Bài toán 35 (Dạng toán tìm số)

    Tìm tất cả các số tự nhiên có hai chữ số, biết rằng chữ số hàng đơn vị  nhỏ hơn chữ số hàng  chục là 2 và tích của hai chữ số đó của nó luôn lớn hơn tổng hai chữ số của nó là 34.

    Lời Giải:

    Gọi chữ số phải tìm là $\overline{ab}$; 0 $\le $a,b $\le $9, a  # 0.

    Vì chữ số hàng đơn vị  nhỏ hơn chữ số hàng  chục là 2 do đó ta có phương trình: a – b = 2.

    Vì tích của hai chữ số đó của nó luôn lớn hơn tổng hai chữ số của nó là 34, do đó ta có phương trình:

    a.b – (a + b) = 34.

    Theo bài ra ta có hệ phương trình: $\left\{ \begin{align}

    & a-b=2 \\

    & a.b-(a+b)=34 \\

    \end{align} \right.$             ;Giải hệ phương trình ta được : $\left\{ \begin{align}

    & a=8 \\

    & b=6 \\

    \end{align} \right.$

    Vậy số phải tìm là 86.

    Bài toán 36 (Dạng toán tìm số)

    Trong dịp kỷ niệm 57 năm ngày thành lập nước CHXHCN Việt Nam 180 học sinh được điều về thăm quan diễu hành, người ta tính. Nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều động ít hơn dùng loại xe nhỏ là 2  chiếc. Biết rằng mỗi ngế ngồi 1 học sinh và mỗi xe lớn nhiều hơn  xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động.

    Lời Giải:

    Gọi số Xe lớn là x (chiếc), x nguyên dương.

    Ta có số Xe nhỏ là: x + 2.

    Ta có số hoc sinh Xe lớn chở được là: $\frac{180}{x}$ (HS).

    Ta có số hoc sinh Xe nhỏ chở được là: $\frac{180}{x+2}$ (tấn).

    Vì mỗi Xe lớn chở được số học sinh nhiều hơn số Xe nhỏ là 15 học sịnh do đó ta có phương trình:

    $\frac{180}{x}$ – $\frac{180}{x+2}$ = 15  ;    Giải phương trình ta được x = 4;      Vậy số Xe lớn là 4 .

    Bài toán 37 (Dạng toán tìm số)

    Một đội xe phải chở 168 tấn thóc. Nếu tăng thêm 6 xe và chở thêm 12 tấn thóc thì mỗi xe xhở nhẹ hơn lúc đầu là 1 tấn. Hỏi lúc đầu mỗi đội có bao nhiêu xe.

    Lời Giải:

    Gọi số Xe lúc đầu lúc đầu của đội là x (chiếc),  x nguyên dương.

    Số thóc lúc đầu mỗi xe phải chở là : $\frac{168}{x}$ (tấn).

    Số Xe sau khi tăng thêm 6 xe là: (x + 6), (Chiếc).

    Sau khi tăng số xe thêm 6 , số thóc thêm 12 tấn thì số thóc mỗi xe cần phải chở là:$\frac{168+12}{x+6}$ (tấn).

    Vì số thóc mỗi xe chở nhẹ hơn 1 tấn sau khi tăng số xe và thêm 12 tấn do đó ta có phương trình:

    $\frac{168}{x}$ – $\frac{168+12}{x+6}$ = 1;     Giải  PTBH: x2 + 2x – 24 = 0    ta được: x = 24;   Vậy số xe lúc đầu của đội là 24 xe.

    Bài toán 38 (Dạng toán tìm số)

    Một phòng họp có 360 Ghế ngồi được xếp thành từng dãy và số Ghế của từng dãy đều như nhau. Nếu số dãy tăng thêm  1 và số Ghế của mỗi dãy tăng thêm 1, thì trong phòng có 400 Ghế. Hỏi trong phòng họp có bao nhiêu dãy Ghế, mỗi dãy có bao nhiêu ghế.

    Lời Giải:

    Gọi số dãy của ghế của phòng học là x (dãy), x nguyên dương.

    Ta có số người của từng dãy là: $\frac{360}{x}$ người.

    Số dãy ghế sau khi tăng thêm  1 dãy là: (x + 1).

    Số người sau khi tăng thêm  1  người trên dãy  là: $\frac{360}{x}$ + 1.

    Vì sau khi tăng số dãy tăng thêm  1 và số ghế của mỗi dãy tăng thêm 1, thì trong phòng có 400 Ghế do đó ta có phương trình: (x + 1) ($\frac{360}{x}$ + 1) = 400;        Giải PTBH ta được : x1 = 15, x2 = 24.

    Vậy  nếu số dãy là 15 thì số ghế trên dãy là 24…. 

    Bài toán 39 (Dạng toán tìm số)

    Cho một số có hai chữ số. Tìm số đó, biết rằng tổng hai chữ số của nó nhỏ hơn số đó 6 lần, nếu thêm  25  vào tích của hai chữ số đó sẽ được một số theo thứ tự ngược lạivới số đẵ cho.

    Lời Giải:

    Gọi chữ số phải tìm là   $\overline{xy}$;  x, y nguyên dương,  0 $\le $x,y $\le $9, x# 0.

    Vì tổng hai chữ số của nó nhỏ hơn số đó 6 lần do đó ta có phương trình: 6 (x + y) = $\overline{xy}$.

    Vì nếu thêm  25  vào tích của hai chữ số đó sẽ được một số theo thứ tự ngược lạivới số đẵ cho do đó ta có phương trình: $\overline{xy}$ + 25 =  $\overline{yx}$.

    Theo bài ra ta có hệ phương trình: $\left\{ \begin{align}

    & 6(x+y)=\overline{xy} \\

    & \overline{xy}+25=\overline{yx} \\

    \end{align} \right.$  ;  Giải hệ phương trình ta được $\left\{ \begin{align}

    & x=5 \\

    & y=4 \\

    \end{align} \right.$

    Vậy số phải tìm là 54.

    Bài toán 40 (Dạng toán sử dụng kiến thức %)

    Trong tháng đầu hai tổ công nhân sản xuất được 800  chi tiết máy. Sang tháng thứ hai tổ  vượt mức 15%, tổ II sản xuất vượt mức 20%, do đó cuối tháng cả hai tổ sản xuất được 945 chi tiết máy. Hỏi rằng trong tháng đầu, mỗi tổ công nhân sản xuất được bao nhiêu chi tiết máy.

    Lời Giải:

    Gọi số chi tiết sản xuất được trong tháng đầu  của Tổ I là x (x nguyên dương), x< 720.

    Gọi số chi tiết sản xuất được trong tháng đầu  của Tổ II là y (y nguyên dương), y< 720.

    Vì trong tháng đầu hai tổ sản xuất được 800 chi tiết máy do đó ta có phương  trình (1)

    x + y = 800

    Vì trong tháng thứ hai Tổ I  vượt mức 15%, Tổ II sản xuất vượt mức 12%, cả hai tổ sản xuất được 720 chi tiết máy do đó ta có phương trình (2) là: x + $\frac{15x}{100}$ + y + $\frac{20x}{100}$ = 945 $$Û $\frac{115}{100}$ x + $\frac{112}{100}$ y = 945

    Theo bài ra ta có hệ phương trình:    $\left\{ \begin{align}

    & x+y=800 \\

    & \frac{115}{100}x+\frac{112}{100}y=945 \\

    \end{align} \right.$; Giải hệ phương trình ta được: $\left\{ \begin{align}

    & x=300 \\

    & y=500 \\

    \end{align} \right.$

    Vậy trong tháng đầu tổ I sản xuất được 300 chi tiết máy, tổ II sản xuất được 500 chi tiết máy.

    Bài toán 41 (Dạng toán sử dụng kiến thức %)

    Năm ngoái dân số của hai tỉnh A và B là 4 triệu người. Dân số tỉnh A năm  nay tăng 1,2 % còn tỉnh B tăng 1,1 %, tổng dân số của hai tỉnh năm nay là 4 045 000 người. Tính dân số của mỗi tỉnh năm ngoái và năm  nay.

    Lời Giải:

    Gọi  dân số năm ngoái của tỉnh A là x (x nguyên dương), x<  4 triệu.

    Gọi  dân số năm ngoái của tỉnh B là y (y nguyên dương), y<  4 triệu

    Vì dân số  năm ngoái của hai tỉnh năm ngoái là 4 triệu do đó ta có phương  trình (1)

    x + y = 4

    Vì dân số năm nay của tỉnh A năm nay tăng 1,2%, tỉnh B tăng 1,1 % do đó ta có phương trình (2) là:

    $\frac{1,2x}{100}$ + $\frac{1,1y}{100}$ = 0, 045

    Theo bài ra ta có hệ phương trình: $\left\{ \begin{align}

    & x+y=4 \\

    & \frac{1,2x}{100}+\frac{1,1y}{100}=0,045 \\

    \end{align} \right.$    ;Giải hệ phương trình ta được: $\left\{ \begin{align}

    & x=1012000 \\

    & y=3033000 \\

    \end{align} \right.$

    Vậy dân số của tỉnh A năm nay là 1 012 000 người, tỉnh B là 3 033 000 người.

    Bài toán 42 (Dạng toán sử dụng kiến thức %)

    Trong tháng đầu, hai tổ công nhân sản xuất được 720  chi tiết máy. Sang tháng thứ hai tổ  vượt mức 15%, tổ II sản xuất vượt mức 12%, do đó cuối tháng cả hai tổ sản xuất được 819 chi tiết máy. Hỏi rằng trong tháng đầu, mỗi tổ công nhân sản xuất được bao nhiêu chi tiết máy.

    Lời Giải:

    Gọi số chi tiết sản xuất được trong tháng đầu  của tổ I là x (x nguyên dương), x< 720.

    Gọi số chi tiết sản xuất được trong tháng đầu  của tổ II là y (y nguyên dương), y< 720.

    Vì trong tháng đầu hai tổ sản xuất được 720 chi tiết máy do đó ta có phương  trình (1)

    x + y = 720

    Vì trong tháng thứ hai tổ I  vượt mức 15%, tổ II sản xuất vượt mức 12%, cả hai tổ sản xuất được 720 chi tiết máy do đó ta có phương trình (2) là: x + $\frac{15x}{100}$ + y + $\frac{12x}{100}$ = 819 $$Û $\frac{115}{100}$ x + $\frac{112}{100}$ y = 819

    Theo bài ra ta có hệ phương trình: $\left\{ \begin{align}

    & x+y=720 \\

    & \frac{115}{100}x+\frac{112}{100}y=819 \\

    \end{align} \right.$

    Giải hệ phương trình ta được: $\left\{ \begin{align}

    & x=420 \\

    & y=300 \\

    \end{align} \right.$

    Vậy trong tháng đầu tổ I sản xuất được 420 chi tiết máy, tổ II sản xuất được 300 chi tiết máy. 

    3. Bài tập giải bài toán bằng cách lập phương trình

    Bài toán 43  Một ô tô đi từ A đến B với một vận tốc xác định và trong một thời gian đã định. Nếu vận tốc ô tô giảm 10 km/ h thì thời gian tăng 45 phút. Nếu vận tốc ô tô tăng 10 km/ h thì thời gian giảm 30 phút. Tính vận tốc và thời gian dự định đi của ô tô.

    Bài toán 44  Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 dụng cụ. Thực tế, xí nghiệp I vượt mức kế hoạch 10%, xí nghiệp II vưượt mức kế hoạch 15%, do đó cả hai xí nghiệp đã làm đưược 404 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch.

    Bài toán 45  Một công nhân dự định làm 72 sản phẩm trong một thời gian đã định. Nhưng thực tế xí nghiệp lại giao 80 sản phẩm. Mặc dù ngưười đó mỗi giờ đã làm thêm một sản phẩm so với dự kiến, nhưưng thời gian hoàn thành công việc vẫn chậm so với dự định là 12 phút. Tính số sản phẩm dự kiến làm trong 1 giờ của ngưười đó. Biết mỗi giờ ngưười đó làm không quá 20 sản phẩm.

    Bài toán 46  Một xe khách và một xe du lịch khởi hành đồng thời từ A để đi đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc xe khách là 20 km/h. Do đó nó đến B trưước xe khách 50 phút. Tính vận tốc mỗi xe, biết quãng đưường AB dài 100km

    Bài toán 47  Theo kế hoạch, một công nhân phải hoàn thành 60 sản phẩm trong thời gian nhất định. Nhưưng do cải tiến kĩ thuật nên mỗi giờ ngưười công nhân đó đã làm thêm đưược 2 sản phẩm. Vì vậy, chẳng những hoàn thành kế hoạch sớm hơn dự định 30 phút mà còn vưượt mức 3 sản phẩm. Hỏi theo kế hoạch, mỗi giờ ngưười đó phải làm bao nhiêu sản phẩm.

    Bài toán 48  Để hoàn thành một công việc, hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II đưược điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc đó.

    Bài toán 49  Một khu vườn hình chữ nhật có chu vi bằng 48 m. Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162 m. Hãy tìm diện tích của khu vườn ban đầu.

    Bài toán 50  Một người đi xe máy từ A đến B. Vì có việc gấp phải đến B trước thời gian dự định là 45 phút nên người đó tăng vận tốc lên mỗi giờ 10 km. Tính vận tốc mà người đó dự định đi, biết quãng đường AB dài 90 km.

    Bài toán 51  Một đội công nhân hoàn thành một công việc với mức 420 ngày công thợ (nghĩa là nếu công việc đó chỉ có một người làm thì phải mất 420 ngày). Hãy tính số công nhân của đội biết rằng nếu đội tăng thêm 5 người thì số ngày để đội hoàn thành công việc sẽ giảm đi 7 ngày.  (trích Đề thi Tốt nghiệp THCS 1999 – 2000, tỉnh Vĩnh Phúc)

    Bài toán 52  Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian.

    Bài toán 53  Người ta muốn làm một chiếc thùng tôn hình trụ không có lắp có bán kính đáy là 25 cm, chiều cao của thùng là 60 cm. Hãy tính diện tích tôn cần dùng (không kể mép nối). Thùng tôn đó khi chứa đầy nước thì thể tích nước chứa trong thùng là bao nhiêu.

    Bài toán 54  Một tam giác có chiều cao bằng  cạnh đáy. Nếu tăng chiều cao thêm 3 dm, giảm cạnh đáy đi 2 dm thì diện tích của nó tăng thêm 12 dm2. Tính chiều cao và cạnh đáy của tam giác.

    (trích Đề thi tuyển sinh THPT 1999-2000, ngày 09- 07- 1999, tỉnh Vĩnh Phúc)

    Bài toán 55  Một đội xe vận tải phải vận chuyển 28 tấn hàng đến một địa điểm qui định. Vì trong đội có 2 xe phải điều đi làm việc khác nên mỗi xe phải chở thêm 0,7 tấn hàng nữa. Tính số xe của đội lúc đầu.

    (trích Đề thi tuyển sinh THPT 1999-2000, ngày 10- 07- 1999, tỉnh Vĩnh Phúc)

    Bài toán 56  Ba ô tô chở 100 tấn hàng tổng cộng hết 40 chuyến. Số chuyến thứ nhất chở gấp rưỡi số chuyến xe thứ hai. Mỗi chuyến, xe thứ nhất chở 2 tấn, xe thứ hai chở 2,5 tấn, xe thứ ba chở 3 tấn. Tính xem mỗi ô tô chở bao nhiêu chuyến.                                                 (trích Đề thi tuyển sinh THPT 2000-2001, ngày 02- 08- 2000, tỉnh Vĩnh Phúc)

    Bài toán 57  Ba chiếc bình có thể tích tổng cộng là 132 lít. Nếu đổ đầy nước vào bình thứ nhất rồi lấy nước đó đổ vào hai bình kia thì:

    Hoặc bình thứ ba đầy nước, còn bình thứ hai chỉ được một nửa bình.

    Hoặc bình thứ hai đầy nước, còn bình thứ ba chỉ được một phần ba bình.

    (Coi như trong quá trình đổ nước từ bình này sang bình kia lượng nước hao phí bằng không).

    Hãy xác định thể tích của mỗi bình.

    (trích Đề thi tuyển sinh THPT 2000-2001, ngày 03- 08- 2000, tỉnh Vĩnh Phúc) .

    Bài toán 58  Một người đi xe máy từ A tới B. Cùng một lúc một người khác cũng đi xe máy từ B tới A với vận tốc bằng  vận tốc của người thứ nhất. Sau 2 giờ hai người gặp nhau. Hỏi mỗi người đi cả quãng đường AB hết bao lâu?

    (trích Đề thi tuyển sinh THPT 2001-2002, ngày 22- 07- 2001, tỉnh Vĩnh Phúc)

    Bài toán 59 Một thửa ruộng hình chữ nhật có diện tích là 100 m2. Tính độ dài các cạnh của thửa ruộng. Biết rằng nếu tăng chiều rộng của thửa ruộng lên 2 m và giảm chiều dài của thửa ruộng đi 5 m thì diện tích của thửa ruộng sẽ tăng thêm 5 m2.                                    (trích Đề thi tuyển sinh THPT 2002-2003, ngày 03- 08- 2002, tỉnh Vĩnh Phúc)

    Bài toán 60 Tìm hai số biết rằng tổng của hai số đó bằng 17 đơn vị. Nếu số thứ nhất tăng thêm 3 đơn vị, số thứ hai tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị.

    (trích Đề thi tuyển sinh THPT 2003-2004, ngày 14- 07- 2003, tỉnh Vĩnh Phúc)

    Bài toán 61 Một ca nô ngược dòng từ bến A đến bến B với vận tốc 20 km/h, sau đó lại xuôi từ bến B trở về bến A. Thời gian ca nô ngược dòng từ A đến B nhiều hơn thời gian ca nô xuôi dòng từ B trở về A là 2 giờ 40 phút. Tính khoảng cách giữa hai bến A và B. Biết vận tốc dòng nước là 5 km/h, vận tốc riêng của ca nô lúc xuôi dòng và lúc ngược dòng bằng nhau.                        (trích Đề thi tuyển sinh THPT 2003-2004, ngày 15- 07- 2003, tỉnh Vĩnh Phúc)

    Bài toán 62 Người ta dự kiến trồng 300 cây trong một thời gian đã định. Do điều kiện thuận lợi nên mỗi ngày trồng được nhiều hơn 5 cây so với dự kiến, vì vậy đã trồng xong 300 cây ấy trước 3 ngày. Hỏi dự kiến ban đầu mỗi ngày trồng bao nhiêu cây? (Giả sử số cây dự kiến trồng mỗi ngày là bằng nhau).

    (trích Đề thi tuyển sinh THPT 2004-2005, ngày 29- 06- 2004, tỉnh Vĩnh Phúc)

    Bài toán 63 Một khu vườn hình chữ nhật, chiều dài lớn hơn chiều rộng 5 m, diện tích bằng 300 m2. Tính chiều dài và chiều rộng của khu vườn.

    (trích Đề thi tuyển sinh THPT 2004-2005, ngày 30- 06- 2004, tỉnh Vĩnh Phúc)

    Bài toán 64 Cho một hình chữ nhật. Nếu tăng độ dài mỗi cạnh của nó lên 1 cm thì diện tích của hình chữ nhật sẽ tăng thêm 13 cm2. Nếu giảm chiều dài đi 2 cm, chiều rộng đi 1 cm thì diện tích của hình chữ nhật sẽ giảm 15 cm2. Tính chiều dài và chiều rộng của hình chữ nhật đã cho.

    (trích Đề thi tuyển sinh THPT 2005-2006, ngày 06- 07- 2005, tỉnh Vĩnh Phúc)

    Bài toán 65  Một mảnh đất hình chữ nhật có chu vi 80 m. Nếu tăng chiều dài thêm 3 m, chiều rộng thêm 5 m thì diện tích của mảnh đất tăng thêm 195 m2. Tính chiều dài, chiều rộng của mảnh đất.

    Bài toán 66 Hai xe máy khởi hành cùng một lúc từ hai tỉnh A và B cách nhau 90 km, đi ngược chiều và gặp nhau sau 1,2 giờ (xe thứ nhất khởi hành từ A, xe thứ hai khởi hành từ B). Tìm vận tốc của mỗi xe. Biết rằng thời gian để xe thứ nhất đi hết quãng đường AB ít hơn thời gian để xe thứ hai đi hết quãng đường AB là 1 giờ.

    (trích Đề thi tuyển sinh THPT 2005-2006, ngày 07- 07- 2005, tỉnh Vĩnh Phúc)

    Bài toán 67 Một xe lửa đi từ ga Hà Nội vào ga Trị Bình (Quảng Ngãi). Sau đó 1 giờ, một xe lửa khác đi từ ga Trị Bình ra ga Hà Nội với vận tốc lớn hơn vận tốc của xe thứ nhất là 5 km/h. Hai xe gặp nhau tại một ga ở chính giữa quãng đường. Tìm vận tốc của mỗi xe lửa, biết quãng đường sắt Hà Nội- Trị Bình dài 900km

    (trích đề thi tốt nghiệp THCS tỉnh Bà Rịa- Vũng Tàu, năm 2004 – 2005)

    Bài toán 68 Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ theo kế hoạch?

    (trích đề thi tốt nghiệp THCS  thành phố Hà Nội, năm 2002- 2003)

    Bài toán 69 Hai ôtô khởi hành cùng một lúc trên quãng đường từ A đến B dài120 km. Mỗi giờ ôtô thứ nhất chạy nhanh hơn ôtô thứ hai là 10 km nên đến B trước ôtô thứ hai là  giờ. Tính vận tốc của mỗi ôtô?

    (trích đề thi tốt nghiệp THCS  tỉnh Bắc Giang, năm 2002- 2003)

    Bài toán 70 Một ca nô xuôi dòng từ bến sông A đến bến sông B cách nhau 24 km; cùng lúc đó, cũng từ A về B một bè nứa trôi với vận tốc dòng nước là 4 km/h. Khi đến B ca nô quay lại ngay và gặp bè nứa tại địa điểm C cách A là 8 km. Tính vận tốc thực của ca nô                                                   (trích ĐTTS THPT tỉnh Bắc Giang, năm 2003- 2004)

    Bài toán 71 Có 3 đội xây dựng cùng làm chung một công việc. Làm chung được 4 ngày thì đội III được điều động làm việc khác, 2 đội còn lại cùng làm thêm 12 ngày nữa thì hoàn thành công việc. Biết rằng năng suất của đội I cao hơn năng suất của đội II; năng suất của đội III là trung bình cộng của năng suất đội I và năng suất đội II; và nếu mỗi đội làm một mình một phần ba công việc thì phải mất tất cả 37 ngày mới xong. Hỏi nếu mỗi đội làm một mình thì bao nhiêu ngày xong công việc trên.        (trích ĐTTS THPT năng khiếu ĐHQG TP. Hồ Chí Minh, năm 2003- 2004)

    Bài toán 72 Một khu vườn hình chữ nhật có chiều dài bằng  chiều rộng và có diện tích bằng 1792 m2. Tính chu vi của khu vườn ấy.                                                               (trích tốt nghiệp THCS TP. Hồ Chí Minh, năm 2003- 2004)

    Bài toán 73 Cùng một thời điểm, một chiếc ôtô XA xuất phát từ thành phố A về hướng thành phố B và một chiếc khác XB xuất phát từ thành phố B về hướng thành phố A. Chúng chuyển động với vận tốc riêng không đổi và gặp nhau lần đầu tại một điểm cách A là 20 km. Cả hai chiéc xe sau khi đến B và A tương ứng, lập tức quay trở lại và chúng gặp nhau lần thứ hai tại một điểm C. Biết thời gian xe XB đi từ C đến B là 10 phút và thời gian giữa hai lần gặp nhau là 1 giờ. Hãy tính vận tốc của từng chiếc ôtô.

    (trích ĐTTS THPT năng khiếu ĐHQG TP. Hồ Chí Minh, năm 2004- 2005)

    Bài toán 74 Để hoàn thành một công việc, hai tổ phải làm chung trong 6 giờ. Sau 2 giờ làm chung thì tổ II được điều đi làm việc khác, tổ I đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thì sau bao lâu sẽ làm xong công việc đó?

    (trích đề thi tốt nghiệp THCS TP. Hà Nội, năm 2003- 2004)

    Bài toán 75 Một xuồng máy xuôi dòng sông 30 km và ngược dòng 28 km hết một thời gian bằng thời gian mà xuồng đi 59,5 km trên mặt hồ yên lặng. Tính vận tốc của xuồng khi đi trên hồ biết rằng vận tốc của nước chảy trong sông là 3 km/h

    Bài toán 76 Nếu mở cả hai vòi nước chảy vào một bể cạn thì sau 2 giờ 55 phút bể đầy nước. Nếu mở riêng từng vòi thì vòi thứ nhất làm đầy bể nhanh hơn vòi thứ hai là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu đầy bể?

    Bài toán 77  Một mảnh vườn hình chữ nhật có diện tích là 720 m2, nếu tăng chiều dài thêm 6 m và giảm chiều rộng đi 4 m thì diện tích mảnh vườn không đổi. Tính các kích thước của mảnh vườn.

    (trích ĐTTS THPT 2005- 2006, tỉnh Thái Bình)

    Bài toán 78 Nếu hai vòi nước cùng chảy vào một cái bể không có nước thì sau 12 giờ bể đầy. Sau khi hai vòi cùng chảy 8 giờ thì người ta khoá vòi I, còn vòi II tiếp tục chảy. Do tăng công suất vòi II lên gấp đôi, nên vòi II đã chảy đầy phần còn lại của bể trong 3 giờ rưỡi. Hỏi nếu mỗi vòi chảy một mình với công suất bình thường thì phải bao lâu mới đầy bể?

    Bài toán 79 Một tam giác có chiều cao bằng  cạnh đáy. Nếu chiều cao giảm đi 2 dm và cạnh đáy tăng thêm 3 dm thì diện tích của nó giảm đi 14 dm2.

    Tính chiều cao và cạnh đáy của tam giác.

    Bài toán 80 Mội thửa ruộng hình chữ nhật có chu vi 250 m. Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng vẫn không thay đổi.

    Bài toán 81 Nhà trường tổ chức cho 180 học sinh khối 9 đi tham quan di tích lịch sử. Người ta dự tính: Nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều ít hơn nếu dùng loại xe nhỏ là hai chiếc. Biết rằng mỗi xe lớn có nhiều hơn mỗi xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động.

    Bài toán 82 Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14 km/ giờ thì đến sớm 2 giờ, nếu giảm vận tốc đi 4 km/ giờ thì đến muộn 1 giờ.

    Tính vận tốc dự định và thời gian dự định.

    Bài toán 83 Một tàu thuỷ chạy trên khúc sông dài 120 km, cả đi và về mất 6 giờ 45 phút. Tính vận tốc của tàu thuỷ khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/ h.

    Bài toán 84 Một ca nô đi xuôi dòng 48 km rồi đi ngược dòng 22 km. Biết rằng thời gian đi xuôi dòng lớn hơn thời gian đi ngược dòng là 1 giờ và vận tốc đi xuôi lớn hơn vận tốc đi ngược là 5 km/h. Tính vận tốc ca nô lúc đi ngược dòng.                                                    (trích ĐTTS THPT chuyên Nguyễn Bỉnh Khiêm 2005 – 2006, tỉnh Vĩnh Long)

    Bài toán 85  Một xe ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 3 giờ, nếu xe chạy chậm lại mỗi giờ 10 km thì đến nơi chậm nhất 5 giờ.

    Tính vận tốc của xe lúc đầu, thời gian dự định và chiều dài quãng đường AB.                   

    Bài toán 86  Hai đội bóng bàn của hai trường phổ thông thi đấu với nhau. Mỗi cầu thủ của đội này phải thi đấu với mỗi cầu thủ của đội kia một trận. Biết rầng tổng số trận đấu bằng 4 lần tổng số cầu thủ của hai đội và số cầu thủ của ít nhất một trong hai đội là số lẻ. Hỏi mỗi đội có bao nhiêu cầu thủ?

    Bài toán 87  Một thửa ruộng hình chữ nhật, nếu tăng chiều dài thêm 2m, chiều rộng thêm 3 m thì diện tích tăng thêm 100 m2. Nếu giảm cả chiều dài lẫn chiều rộng đi 2 m thì diện tích giảm đi 68 m2. Tính diện tích của thửa ruộng đó.

    Bài toán 88  Ba xe ô tô chở 118 tấn hàng tổng cộng hết 50 chuyến. Số chuyến xe thứ nhất chở gấp rưỡi số chuyến xe thứ hai. Mỗi chuyến xe thứ nhất chở 2,5 tấn, xe thứ ba chở 3 tấn. Hỏi mỗi ô tô chở mấy chuyến.

    Bài toán 89  Ba ca nô cùng rời bến sông A một lúc để đến B. Ca nô thứ 2 mỗi giờ đi kém ca nô thứ nhất 3 km nhưng hơn ca nô thứ ba 3km nên đến B sau ca nô thứ nhất 2 giờ, nhưng trước ca nô thứ ba là 3 giờ. Tính chiều dài quãng sông AB.

    Bài toán 90  Một bè lứa trôi tự do (trôi theo vận tốc dòng nước) và một ca nô đồng thời rời bến A để suôi dòng sông. Ca nô suôi dòng được 96 km thì quay ngay lại A. Cả đi lẫn về hết 14 giờ. Trên đường quay về A khi còn cách A là 24 km thì ca nô gặp chiếc bè lứa nói trên. Tính vận tốc của ca nô và vận tốc của dòng nước.

    Bài toán 91  Ba vòi nước A, B, C được bắc cùng vào một bể chứa. Các vòi chảy được một lượng nước bằng thể tích của bể theo thời gian chảy được ghi trong các trường hợp sau:

    a)Vòi A : 2giờ và vòi B : 1giờ 30 phút;

    b)Vòi A : 1giờ và vòi C : 4 giờ;

    c)Vòi B : 3 giờ và vòi C : 2 giờ.

    Tính thời gian để riêng từng vòi chảy được một lượng bằng thể tích của bể.

    Bài toán 92  Có 2 hộp đựng bi, nếu lấy từ hộp thứ nhất một số bi bằng số bi có trong hộp thứ hai rồi bỏ vào hộp thứ hai, rồi lại lấy từ hộp thứ hai một số bi bằng số bi còn lại trong hộp thứ nhất và bỏ vào hộp thứ nhất, cuối cùng lấy từ hộp thứ nhất một số bi bằng số bi còn lại trong hộp thứ hai và bỏ vào hộp thứ hai. Khi đó số bi trong mỗi hộp đều là 16 viên. Hỏi lúc đầu mỗi hộp có bao nhiêu viên bi?

    Bài toán 93  Ba chiếc bình có thể tích tổng cộng là 120 lít. Nếu đổ đầy nước vào bình thứ nhất rồi rót vào hai bình kia thì hoặc bình thứ ba đầy nước, còn bình thứ hai chỉ được thể tích của nó, hoặc bình thứ hai đầy nước còn bình thứ ba chỉ được thể tích của nó. Hãy xác định thể tích của mỗi bình.

    Bài toán 94  Hai máy cày có công suất khác nhau cùng làm việc đã cày được  cánh đồng trong 15 giờ. Nếu máy thứ nhất cày 12 giờ, máy thứ hai cày trong 20 giờ thì cả hai máy cày được 20% cánh đồng. Hỏi nếu mỗi máy làm việc riêng thì sẽ cày song cánh đồng trong bao lâu?

    Bài toán 95  Hai người cùng làm một công việc như theo cách sau:

    Người thứ nhất làm trong thời gian mà người thứ hai làm một mình xong công vịêc đó.

    Tiếp đó người thứ hai làm trong  thời gian mà người thứ nhất một mình làm xong công việc đó.

    Như vậy cả hai người làm được  công việc.

    Tìm thời gian mà mỗi người làm một mình xong công việc đó, biết rằng nếu cả hai người cùng làm thì 3 giờ 36 phút xong công việc đó.

    Bài toán 96  Đem một số có hai chữ số nhân với tổng các chữ số của nó thì được 405.

    Nếu lấy số được viết bởi hai chữ số ấy nhưng theo thứ tự ngược lại nhân với tổng các chữ số của nó thì được 468. Hãy tìm số có hai chữ số đó.

    Bài toán 97  Một đoàn học sinh tổ chức đi thăm quan bằng ô tô. Người ta nhận thấy rằng nếu mỗi xe chỉ trở 22 học sinh thì còn thừa 1 học sinh. Nếu bớt đi một ô tô thì có thể phân phối đều các học sinh trên các ô tô còn lại. Hỏi lúc đầu có bao nhiêu ô tô và có bao nhiêu học sinh đi thăm quan, biết rằng mỗi ô tô chỉ chở được không quá 32 học sinh.

    Bài toán 98  Một hình chữ nhật có diện tích 1200 m2. Tính các kích thước của vườn đó, biết rằng nếu tăng chiều dài thêm 5 m và giảm chiều rộng đi 10 m thì diện tích của vườn giảm đi 300m2.

    Bài toán 99  Một thửa ruộng hình tam giác có diện tích 180m2. Tính cạnh đáy của thửa ruộng đó, biết rằng nếu tăng cạnh đáy thêm 4 m và giảm chiều cao tương ứng đi 1 m thì diện tích của nó không đổi.

    Bài toán 100  Hai công nhân nếu làm chung thì hoàn tyhành một công việc trong 4 ngày. Người thứ nhất làm một nửa công việc, sau đó người thứ hai làm nốt nửa công việc còn lại thì toàn bộ công việc sẽ được hoàn thành trong 9 ngày. Hỏi nễu mỗi người làm riêng thì sẽ hoàn thành công việc đó trong bao nhiêu ngày.

    Bài toán 101  Một phòng họp có 100 người được sắp xếp ngồi đều trên các ghế. Nếu có thêm 44 người thì phải kê thêm hai dãy ghế và mỗi dãy ghế phải xếp thêm hai người nữa. Hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế?

    Bài toán 102  Lúc 6h30 phút một người đi xe máy từ A đến B dài 75km với vận tốc định trước. Đến B người đó nghỉ lại 20 phút rồi quay trở về A với vận tốc lớn hơn vận tốc dự định là 5km/h. Người đó về đến A lúc 12 giờ 20 phút. Tính vận tốc dự dịnh của người đi xe máy.

    Bài toán 103  Hai bến sông A và B cách nhau 40 km. Cùng một lúc một chiếc ca nô xuôi dòng từ A đến B và một chiếc bè cũng trôi từ A đến B với vận tốc 3km/h. Sau khi đến B, ca nô quay về A ngay và gặp chiếc bè ở một địa điểm cách A là 8km. Tính vận tốc của ca nô.

    Bài toán 104  Người ta trộn 4 kg chất lỏng loại I với 3 kg chất lỏng loại II thì được một hỗn hợp có khối lượng riêng là 700kg/m3. Biết rằng khối lượng riêng của chất lỏng loại I lớn hơn khối lượng riêng của chất lỏng loại II là 200kg/m3. Tính khối lượng riêng của mỗi chất lỏng.

    Bài toán 105  Một hợp kim gồm đồng và kẽm trong đó có 5 gam kẽm. Nếu thêm 15 gam kẽm vào hợp kim này thì được một hợp kim mới mà trong hợp kim đó lượng đồng đã giảm so với lúc đầu là 30%. Tìm khối lượng ban đầu của hợp kim.

    Bài toán 106  Số đường chéo của một đa giác lồi là 230. Tính số cạnh của đa giác này.

    Bài toán 107  Một ca nô dự định đi từ A đến B trong thời gian đã định. Nếu vận tốc ca nô tăng 3km/h thì đến nơi sớm hai giờ. Nếu vận tốc ca nô giảm 3km/h thì đến nơi chậm 3 giờ. Tính chiều dài khúc sông AB.

    Bài toán 108  Tính các kích thước của một hình chữ nhật biết rằng nếu tăng chiều dài 3m, giảm chiều rộng 2 m thì diện tích không đổi; nếu giảm chiều dài3 m, tăng chiều rộng 3 m thì diện tích không đổi.

    Bài toán 109  Một công nhân phải làm một số dụng cụ trong một thời gian. Nếu mỗi ngày tăng 3 dụng cụ thì hoàn thành sớm 2 ngày, nếu mỗi ngày làm giảm 3 dụng cụ thì thời gian phải kéo dài 3 ngày. Tính số dụng cụ được giao.

    Bài toán 110  Để sửa chữa một quãng đường, cần huy động một số người làm trong một số ngày. Nếu bổ sung thêm 3 người thì thời gian hoàn thành rút được 2 ngày. Nếu rút bớt 3 người thì thời gian hoàn thành phải kéo dài thêm 3 ngày. Tính số người dự định huy động và số ngày dự định hoàn thành công việc.

    Bài toán 111  Trong một trang sách, nếu tăng thêm 3 dòng, mỗi dòng bớt 2 chữ thì số chữ của trang không đổi; nếu bớt đi 3 dòng, mỗi dòng tăng thêm 3 chữ thì số chữ của trang cũng không đổi. Tính số chữ trong trang sách.

    Bài toán 112  Một câu lạc bộ có một số ghế quy định.

    Nếu thêm 3 hàng ghế thì mỗi hàng bớt được 2 ghế.

    Nếu bớt đi ba hàng thì mỗi hàng phải thêm 3 ghế.

    Tính số ghế của câu lạc bộ.

    Bài toán 113  Một phòng họp có một số dãy ghế, tổng cộng 40 chỗ. Do phải xếp 55 chỗ nên người ta kê thêm 1 dãy ghế và mỗi dãy xếp thêm 1 chỗ. Hỏi lúc đầu có mấy dãy ghế trong phòng?

    Bài toán 114  Có ba thùng đựng nước.

    • Lần thứ nhất, người ta đổ ở thùng I sang hai thùng kia một số nước bằng số nước ở mỗi thùng đó đang có.
    • Lần thứ hai,  người ta đổ ở thùng II sang hai thùng kia một số nước gấp đôi số nước ở mỗi thùng đó đang có.
    • Lần thứ  ba, người ta đổ ở thùng III sang hai thùng kia một số nước bằng số nước ở mỗi thùng đó đang có.
    • Cuối cùng mỗi thùng đều có 24 lít nước. Tính số nước ở mỗi thùng có lúc đầu.

    Bài toán 115  Một hình vườn hình chữ nhật có chu vi 450 m. Nếu giảm chiều dài đi  chiều dài cũ, tăng chiều rộng lên  chiều rộng cũ thì chu vi hình chữ nhật không đổi. Tính chiều dài và chiều rộng của vườn.

    Bài toán 116  Một vườn hình chữ nhật có chiều dài hơn chiều rộng 20 m, diện tích 3500 m2. Tính độ dài hàng rào xung quanh vườn biết rằng người ta chừa ra 1 m để làm cổng ra vào.

    Bài toán 117  Một tuyến đường sắt có một số ga, mỗi ga có một loại vé đến từng ga còn lại. Biết rằng có tất cả 210 loại vé. Hỏi tuyến đường ấy có bao nhiêu ga?

    Bài toán 118  Hai trường A và B của một thị trấn có 210 học sinh thi đỗ hết lớp 9, đạt tỷ lệ trúng tuyển 84%.

    Tính riêng thì trường A đỗ 80%, trường B đỗ 90%.

    Tính xem mỗi trường có bao nhiêu học sinh lớp 9 dự thi?

    Bài toán 119  Dân số của một thành phố hiện nay là 408 040 người, hàng năm dân số tăng 1%. Hỏi hai năm trước đây, dân số thành phố là bao nhiêu?

    Bài toán 120  Mức sản xuất của một xí nghiệp cách đây hai năm là 75000 dụng cụ một năm, hiện nay là 90750 dụng cụ một năm. Hỏi năm sau xí nghiệp làm tăng hơn năm trước bao nhiêu phần trăm?

    Bài toán 121  Quãng đường AB gồm một đoạn lên dốc dài 4 km, đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc lúc đi và về như nhau, vận tốc xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.

    Bài toán 122  Một ca nô xuôi khúc sông dài 40 km rồi ngược khúc sông ấy hết 4 giờ rưỡi. Biết thời gian ca nô xuôi 5 km bằng thời gian ngược 4km .

    Tính vận tốc dòng nước.

    Bài toán 123  Một ca nô đi xuôi dòng 45 km rồi ngược dòng 18 km.

    Biết rằng thời gian xuôi lâu hơn thời gian ngược 1giờ và vận tốc xuôi lớn hơn vận tốc ngược là 6 km/h.

    Tính vận tốc của ca nô lúc ngược dòng.

    Bài toán 124  Một người đi xe đạp từ A đến B đường dài 78 km. Sau đó một giờ, người thứ hai đi từ B đến A. Hai người gặp nhau tại C cách B là 36 km. Tính thời gian mỗi người đã đi từ lúc khởi hành đến lúc gặp nhau biết rằng vận tốc người thứ hai lớn hơn vận tốc người thứ nhất là 4 km/h.

    Bài toán 125  Hai công nhân phải làm một số dụng cụ bằng nhau trong cùng một. Người thứ nhất mỗi giờ làm tăng thêm 2 dụng cụ nên hoàn thành công việc trước thời hạn 2 giờ. Người thứ hai mỗi giờ làm tăng 4 dụng cụ nên không những hoàn thành công việc trước thời hạn 3 giờ mà còn làm thêm 6 chiếc nữa. Tính số dụng cụ mỗi người được giao.

    Bài toán 126  Vào thế kỷ thứ III trước Công Nguyên, vua xứ Xiracut giao cho Acsimét kiểm tra xem chiếc mũ bằng vàng của nhà vua có bị pha thêm bạc hay không. Chiếc mũ có trọng lượng 5 Niutơn (theo đơn vị hiện nay), nhúng trong nước thì trọng lượng giảm 0,3 Niutơn. Biết rằng khi cân trong nước, vàng giảm  trọng lượng, bạc giảm  trọng lượng. Hỏi chiếc mũ chứa bao nhiêu gam vàng, bao nhiêu gam bạc?

    Vật có khối lượng 100 gam thì có trọng lượng 1 Niutơn).

    Bài toán 127  Có hai loại quặng chứa 75% sắt và 50% sắt. Tính khối lượng của mỗi loại quặng đem trộn để được 25 tấn quặng chứa 66% sắt.

    Bài toán 128  Hai máy cày làm việc trên một cánh đồng. Nếu cả hai máy cùng cày thì 10 ngày xong công việc. Nhưng thực tế hai máy chỉ cùng làm việc 7 ngày đầu, sau đó máy thứ nhất đi cày nơi khác, máy thứ hai làm tiếp 9 ngày nữa thì xong. Hỏi mỗi máy làm việc một mình thì trong bao lâu cày xong cả cánh đồng?

     Bài toán 129 Tìm số có ba chữ số sao cho chia nó cho 11, ta được thương bằng tổng các chữ số của số bị chia.

    Bài toán 130  Tìm số có bốn chữ số biết rằng chữ số hàng nghìn và hàng trăm giống nhau, chữ số hàng chục và hàng đơn vị giống nhau, số phải tìm có thể viết được thành một tích của ba thừa số, mỗi thừa số gồm hai chữ số giống nhau.

    Bài toán 131  Tìm số chính phương có bốn chữ số biết rằng nếu mỗi chữ số giảm đi 1 ta được một số mới cũng là số chính phương.

    Bài toán 132  Nếu thêm 3 vào mỗi chữ số của một số chính phương có bốn chữ số (mỗi chữ số của số chính phương này đều nhỏ hơn 7) ta được một số chính phương mới. Tìm hai số chính phương đó.

    Bài toán 133  Tìm ba số tự nhiên sao cho tổng các nghịch đảo của chúng bằng 2.

    Bài toán 134  Tìm ba số tự nhiên sao cho tổng các nghịch đảo của chúng bằng1.

    Bài toán 135 Tuổi hai anh em cộng lại bằng 21. Tuổi anh hiện nay gấp đôi tuổi em lúc anh bằng tuổi em hiện nay. Tính tuổi mỗi người hiện nay.

    Bài toán 136  Một xí nghiệp dự định điều một số xe để chuyển 120 tạ hàng. Nếu mỗi xe chở thêm 1 tạ so với dự định thì số xe giảm đi 4 chiếc. Tính số xe dự định điều động.

    Bài toán 137  Có hai đội công nhân, mỗi đội phải sửa 10 km đường. Thời gian đội I làm nhiều hơn đội II là 1 ngày. Trong một ngày, mỗi đội làm được bao nhiêu kilômét biết rằng cả hai đội làm được 4,5 km trong một ngày.

    Bài toán 138  Một sân hình chữ nhật có diện tích 720 m2. Nếu tăng chiều dài 6 m, giảm chiều rộng 4 m thì diện tích không đổi. Tính các kích thước của sân.

    Bài toán 139  Một tấm sắt có chu vi 96 cm. Người ta cắt ra ở mỗi góc một hình vuông cạnh 4 cm rồi gấp lên thành một hình hộp chữ nhật không nắp có thể tích 768 cm3. Tính kích thước của tấm sắt.

    Bài toán 140  Hai đội thuỷ lợi cùng đào một con mương. Nếu mỗi đội làm một mình cả con mương thì thời gian tổng cộng hai đội phải làm là 25 giờ. Nếu hai đội cùng làm thì công việc hoàn thành trong 6 giờ. Tính xem mỗi đội làm một mình xong cả con mương trong bao lâu?

    Bài toán 141  Tìm hai số tự nhiên biết tổng của chúng bàng 59, hai lần số này bé hơn ba lần số kia là 7. Tìm hai số đó.

    Bài toán 142  Tìm hai số biết rằng bốn lần số thứ hai cộng với năm lần số thứ nhất bằng 18040, và ba lần số số thứ nhất hơn hai lần số thứ hai là 2002.

  • Phương trình đối xứng đối với sin x và cos x

    Phương trình đối xứng đối với sin x và cos x

    Phương trình đối xứng đối với sin x và cos x là một dạng phương trình quan trọng bên cạnh các phương trình lượng giác thường gặp (phương trình bậc nhất, phương trình bậc hai đối với một hàm số lượng giác, phương trình bậc nhất đối với sin x và cos x, phương trình thuần nhất bậc hai đối với sin x và cos x)

    Phương trình đối xứng đối với sin x và cos x là gì?

    Dạng tổng quát: Là các phương trình chỉ chứa $\sin x$ và $\cos x$ sao cho khi đổi chỗ $\sin x, \cos x$ cho nhau, phương trình là không đổi.

    Cách giải: Đặt $t=\sin x+\cos x=\sqrt{2}\sin \left( x+\frac{\pi }{4} \right)$, điều kiện $t\in \left[ -\sqrt{2};\sqrt{2} \right]$ thì suy ra $\sin x\cos x=\frac{{{t}^{2}}-1}{2}$.

    Lưu ý, sau khi tìm được $t$, chúng ta cần thay vào $t=\sin x+\cos x$ và giải để tìm $x$. Không được thay vào $\sin x\cos x=\frac{{{t}^{2}}-1}{2}$, vì đây là phương trình hệ quả.

    Ví dụ phương trình đối xứng đối với sin x và cos x

    Ví dụ 1. Giải các phương trình:

    1. $\sin x+\cos x+3\sin x\cos x=1$
    2. $\dfrac{1}{\sin x}+\dfrac{1}{\cos x}=\sqrt{2}$

    Chú ý. Nhiều phương trình chưa có dạng đang xét thì sử dụng các công thức lượng giác để biến đổi về dạng đang xét.

    Ví dụ 2. Giải các phương trình:

    1. $2\sin 2x-2(\sin x+\cos x)+1=0$
    2. $1+\tan x=2\sqrt{2}\sin x$

    Chú ý. Cách giải trên cũng được sử dụng để giải các phương trình chỉ chứa $\sin x – \cos x$ và $\sin x\cos x$.

    Ví dụ 3. Giải các phương trình:

    1. $(1+\sqrt{2})(\sin x-\cos x)+2\sin x\cos x=1+\sqrt{2}$
    2. $\left| \sin x-\cos x \right|+4\sin 2x=1$

    Chú ý. Cách đặt ẩn phụ như trên cũng được dùng để tìm giá trị lớn nhất, nhỏ nhất của hàm số lượng giác

    Ví dụ 4. Tìm giá trị lớn nhất, nhỏ nhất của hàm số:

    1. $y=\dfrac{1-\sin 2x}{\sin x+\cos x+2}$
    2. $y=\sin x-\cos x+\sqrt{1+\sin x\cos x}$

    Bài tập phương trình lượng giác đối xứng đối với sin x và cos x

    Giải phương trình:

    1. $1+\tan x=2\sin x + \frac{1}{\cos x}$
    2. $\sin x+\cos x=\frac{1}{\tan x}-\frac{1}{\cot x}$
    3. $1- \sin3x+\cos3x= \sin2x$
    4. $2\sin x+\cot x=2 \sin2x+1$
    5. $\sqrt{2}\sin2x(\sin x+\cos x)=2$
    6. $\sqrt{2}(\sin x+\cos x)=\tan x+\cot x$
    7. $ 1+\sin^32x+\cos^32 x=\frac{3}{2}\sin 4x$
    8. $\left| \sin x-\cos x \right|+4\sin 2x=1$
  • Phương trình bậc nhất đối với sin x và cos x

    Phương trình bậc nhất đối với sin x và cos x

    Phương trình bậc nhất đối với sin x và cos x là một trong những dạng Phương trình lượng giác thường gặp.

    1. Phương trình bậc nhất đối với $\sin x$ và $\cos x$

    Dạng tổng quát: $a\sin x+b\cos x=c$ với ${{a}^{2}}+{{b}^{2}}\ne 0$

    Cách giải: Chia hai vế cho $\sqrt{{{a}^{2}}+{{b}^{2}}}$

    Chú ý. Điều kiện nghiệm của phương trình là ${{a}^{2}}+{{b}^{2}}\ge {{c}^{2}}$

    Ví dụ 1. Giải các phương trình sau:

    1. $\sin x-\sqrt{3}\cos x=1$
    2. $\sin 2x+\cos 2x=\sqrt{2}$
    3. $3\sin x+4\cos x-5=0$
    4. $2\sin x-3\cos x=5$

    Ví dụ 2. Giải các phương trình sau:

    1. $\sin x-\cos x=\sqrt{3}$
    2. $\sin x+\sqrt{3}\cos x=\sqrt{3}$
    3. $\sin x+2\cos x=\sqrt{5}$
    4. $\cos 7x-\sqrt{3}\sin 7x+\sqrt{2}=0$

    Chú ý. Nhiều phương trình chưa có dạng đang xét thì cần sử dụng công thức lượng giác hoặc đặt ẩn phụ để đưa về dạng đang xét

    Ví dụ 3. Giải các phương trình sau:

    1. ${{\cos }^{2}}x+\sqrt{12}\sin x\cos x=1+{{\sin }^{2}}x$
    2. $\sqrt{3}\sin x+\cos x=3+\frac{1}{\sqrt{3}\sin x+\cos x+1}$

    Ví dụ 4. Giải các phương trình sau:

    1. $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}$
    2. $4\sin x+3\cos x+\frac{6}{4\sin x+3\cos x+1}=6$

    Chú ý. Cách làm trên cũng được áp dụng khi giải các phương trình có dạng:

    • $a\sin u+b\cos u=\sqrt{{{a}^{2}}+{{b}^{2}}}\sin v$
    • $a\sin u+b\cos u=\sqrt{{{a}^{2}}+{{b}^{2}}}\cos v$
    • $a\sin u+b\cos u=\pm a\sin v\pm b\cos v$

    Ví dụ 5. Giải các phương trình sau:

    1. $\sin x+\sqrt{3}\cos x=2\cos 5x$
    2. $2\sin x+3\cos x=2\cos 3x-2\sin 3x$
    3. $\sqrt{3}\sin 2x-\cos 2x=2\sin 3x$
    4. $\sin x-2\cos x=\cos 3x-2\sin 3x$
    5. $\frac{\cos x-2\sin x.\cos x}{2{{\cos }^{2}}x+\sin x-1}=\sqrt{3}$

    Chú ý. Điều kiện có nghiệm của phương trình bậc nhất với $\sin x$ và $\cos x$ cũng được dùng để tìm giá trị lớn nhất, nhỏ nhất của các hàm số lượng giác bằng phương pháp sử dụng định nghĩa tập giá trị.

    Ví dụ 6. Tìm giá trị lớn nhất, nhỏ nhất của các hàm số sau:

    1. $y=2+3\sin x+4\cos x$
    2. $y=\frac{2+\cos x}{\sin x+\cos x-2}$
    3. $y=\sin x+\sqrt{3}\cos x+2$
    4. $y=f(x)=\frac{\sin x+2\cos x+1}{\sin x+\cos x+2}$
    5. $y=f(x)=3\sin 2x+4{{\cos }^{2}}x$

    2. Phương trình thuần nhất bậc cao với sin x và cos x

    Phương trình thuần nhất bậc hai với sin x và cos x

    Dạng tổng quát: $$a{{\sin }^{2}}x+b\sin x\cos x+c{{\cos }^{2}}x=d$$

    Cách giải 1: Chia hai vế cho ${{\cos }^{2}}x$ để đưa về phương trình bậc hai đối với $\tan x$

    Ví dụ 1. Giải các phương trình:

    1. ${{\sin }^{2}}x+3\sin x\cos x+2{{\cos }^{2}}x=0$
    2. $4\sin x+3\sqrt{3}\sin x.\cos x-2{{\cos }^{2}}x=4$

    Chú ý. Nếu chia hai vế cho ${{\sin }^{2}}x$ thì được phương trình bậc hai đối với $\cot x$

    Ví dụ 2. Giải các phương trình:

    1. $3{{\sin }^{2}}x-\sqrt{3}\sin x\cos x+2{{\cos }^{2}}x=2$
    2. $\sin x+(1-\sqrt{3})\sin x\cos x-\sqrt{3}{{\cos }^{2}}x=0$
    3. ${{\sin }^{2}}x-3\sin x\cos x=1$

    Chú ý. Trong nhiều trường hợp, phương trình chưa có dạng đang xét thì sử dụng công thức lượng giác biến đổi về dạng đang xét

    Ví dụ 3. Giải phương trình:

    1. $3{{\sin }^{2}}x-4\sin 2x-2\cos 2x+5{{\cos }^{2}}x=0$
    2. \sqrt{3}\sin x+\cos x=\frac{1}{\cos x}$

    Cách giải 2: Sử dụng công thức hạ bậc hoặc công thức nhân đôi thấy có dạng bậc nhất với sinx và cosx

    Ví dụ 1. Giải các phương trình:

    1. ${{\sin }^{2}}x+3\sin x\cos x+2{{\cos }^{2}}x=0$
    2. $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}$
    3. $3{{\sin }^{2}}x-4\sin 2x-2\cos 2x+5{{\cos }^{2}}x=0$
    4. ${{\cos }^{2}}x-3\sin x\cos x-2{{\sin }^{2}}x-1=0$

    2. Phương trình thuần nhất bậc cao (bậc 3) với sin x và cos x

    Cách giải hoàn toàn tương tự như trên nhưng không sử dụng công thức hạ bậc mà chia hai vế cho $\sin x$ hoặc $\cos x$ với số mũ cao nhất.

    Ví dụ. Giải các phương trình:

    1. $4{{\cos }^{3}}x+2{{\sin }^{3}}x-3\sin x=0$
    2. ${{\sin }^{3}}x+{{\cos }^{3}}x=\sin x-\cos x$
    3. ${{\sin }^{3}}x+{{\cos }^{3}}x=\sin x+\cos x$
    4. $4{{\sin }^{3}}x+3{{\cos }^{3}}x-3\sin x-{{\sin }^{2}}x\cos x=0$
    5. ${{\sin }^{4}}x+{{\cos }^{4}}x=1$

    LUYỆN TẬP

    Giải các phương trình:

    1. $\cos 7x.\cos 5x-\sqrt{3}\sin 2x=1-\sin 7x.\sin 5x$
    2. $4{{\sin }^{3}}x-1=3\sin x-\sqrt{3}\cos 3x$
    3. $4({{\sin }^{4}}x+{{\cos }^{4}}x)+\sqrt{3}\sin 4x=2$
    4. $\sqrt{2+\cos 2x+\sqrt{3}\sin 2x}=\sin x+\sqrt{3}\cos x$
    5. ${{\sin }^{2}}x-3\sin x\cos x+1=0$
    6. $4\sin x+6\cos x=\frac{1}{\cos x}$
    7. ${{\cos }^{3}}x-4{{\sin }^{3}}x-3\cos x.{{\sin }^{2}}x+\sin x=0$
    8. $2{{\cos }^{3}}x=\sin 3x$
  • Giải và biện luận phương trình bậc 2

    Giải và biện luận phương trình bậc 2

    Giải và biện luận phương trình bậc 2

    Giải và biện luận phương trình bậc 2 là dạng toán quan trọng, không chỉ xuất hiện trong các đề thi học kì, đề thi HSG mà còn xuất hiện cả trong các bài tập Tin học, lập trình.

    Xem thêm: Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    1. Cách giải và biện luận phương trình bậc 2

    Để giải và biện luận phương trình bậc 2, chúng ta tính $\Delta$ và dựa vào đó để biện luận. Chú ý rằng, trong thực tế chúng ta thường gặp bài toán tổng quát: Giải và biện luận phương trình $ax^2+bx+c=0$ với hệ số $a$ có chứa tham số. Lúc đó, quy trình giải và biện luận như sau.

    Bài toán: Giải và biện luận phương trình $ax^2+bx+c=0$

    Chúng ta xét 2 trường hợp chính:

    • Trường hợp 1. Nếu $a=0$ thì phương trình $ax^2+bx+c=0$ trở thành $$bx+c=0$$ Đây chính là dạng phương trình bậc nhất $ax+b=0$ đã biết cách giải. Các em học sinh xem chi tiết tại Giải và biện luận phương trình ax+b=0
    • Trường hợp 2. Nếu $a\ne 0$ thì phương trình đã cho là phương trình bậc hai có: $$\Delta=b^2-4ac$$ Chúng ta lại xét tiếp 3 khả năng của $\Delta$:
      • $\Delta<0$: Phương trình vô nghiệm;
      • $\Delta=0$: Phương trình có một nghiệm $ x=\frac{-b}{2a}$, đôi khi ta còn gọi là nghiệm kép;
      • $\Delta>0$: Phương trình có hai nghiệm (phân biệt), đặt là $ x_1,x_2$ được tính bởi $$ x_1=\frac{-b-\sqrt{\Delta}}{2a}, x_2=\frac{-b+\sqrt{\Delta}}{2a}. $$

    Cuối cùng, chúng ta tổng hợp các trường hợp lại thành một kết luận chung.

    2. Ví dụ Giải và biện luận phương trình bậc 2

    Ví dụ 1. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$2x^2+3x+m-5=0$$

    Hướng dẫn. Chúng ta có có $ \Delta=3^2-4\cdot 2\cdot(m-5)=49-8m$. Do đó, có 3 trường hợp sau:

    • Trường hợp 1. Nếu $ \Delta <0 \Leftrightarrow m>\frac{49}{8}$ thì phương trình vô nghiệm.
    • Trường hợp 2. Nếu $ \Delta =0 \Leftrightarrow m=\frac{49}{8}$ thì phương trình có một nghiệm $ x=-\frac{3}{4}$.
    • Trường hợp 3. Nếu $ \Delta >0 \Leftrightarrow m<\frac{49}{8}$ thì phương trình có hai nghiệm phân biệt $$ x=\frac{-3\pm\sqrt{49-8m}}{4}.$$

    Ví dụ 2. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$x^2-x+m=0.$$

    Hướng dẫn. Chúng ta có $ \Delta=(-1)^2-4m=1-4m$ và xét 3 trường hợp:

    • Trường hợp 1. Nếu $ \Delta <0 \Leftrightarrow m>\frac{1}{4}$ thì phương trình vô nghiệm.
    • Trường hợp 2. Nếu $ \Delta =0 \Leftrightarrow m=\frac{1}{4}$ thì phương trình có một nghiệm $ x=-\frac{1}{2}$.
    • Trường hợp 3. Nếu $ \Delta >0 \Leftrightarrow m<\frac{1}{4}$ thì phương trình có hai nghiệm phân biệt $$ x=\frac{1\pm\sqrt{1-4m}}{2}.$$

    Ví dụ 3. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$(m-1)x^2+3x+5=0$$

    Hướng dẫn. Chúng ta xét hai trường hợp chính:

    • Trường hợp 1. Nếu $ m-1=0 \Leftrightarrow m=1$ thì phương trình đã cho trở thành $$ 0x^2+3x+5=0 \Leftrightarrow x=-\frac{5}{3} $$
    • Trường hợp 2. Nếu $ m-1\ne 0 \Leftrightarrow m\ne 1$ thì phương trình đã cho là phương trình bậc hai có $$ \Delta=3^2-4\cdot 5\cdot(m-1)=29-20m $$ Trường hợp này lại có 3 khả năng sau:
      • $ \Delta<0 \Leftrightarrow m>\frac{29}{20}$ thì phương trình vô nghiệm;
      • $ \Delta=0 \Leftrightarrow m=\frac{29}{20}$ thì phương trình có một nghiệm $ x=-\frac{3}{2(m-1)}=-\frac{10}{3}$;
      • $ \Delta>0 \Leftrightarrow m<\frac{29}{20}$ thì phương trình có 2 nghiệm phân biệt $ x=\frac{-3\pm \sqrt{29-20m}}{2(m-1)}$.

    Tóm lại, chúng ta có kết luận sau:

    • $ m>\frac{29}{20}$: Phương trình vô nghiệm;
    • $ m=\frac{29}{20}$ hoặc $ m=1$: Phương trình có một nghiệm;
    • $ m<\frac{29}{20}$ và $ m\ne 1$: Phương trình có 2 nghiệm phân biệt.

    Ví dụ 4. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$mx^2+2mx+m-4=0$$

    Hướng dẫn. Chúng ta xét hai trường hợp chính:

    • Trường hợp 1. Nếu $ m=0$ thì phương trình đã cho trở thành $$ 0x^2+0x-4=0$$ Phương trình này rõ ràng vô nghiệm.
    • Trường hợp 2. Nếu $ m\ne 0$ thì phương trình đã cho là phương trình bậc hai có $$ \Delta’=m^2-m(m-4)=4m. $$ Vì $ m\ne 0$ nên trường hợp này lại có 2 khả năng sau:
      • $ \Delta<0 \Leftrightarrow m<0$ thì phương trình vô nghiệm;
      • $ \Delta>0 \Leftrightarrow m>0$ thì phương trình có 2 nghiệm phân biệt $ x=\frac{-m\pm \sqrt{4m}}{m}$.

    Như vậy, chúng ta có kết luận sau:

    • $ m\leqslant 0$: Phương trình vô nghiệm;
    • $ m>0$: Phương trình có 2 nghiệm phân biệt.

    Ví dụ 5. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$(m^2-1)x^2+6(m-1)x+9=0$$

    Hướng dẫn. Chúng ta xét 2 trường hợp chính:

    • Trường hợp 1. Nếu $ m^2-1=0 \Leftrightarrow m=\pm 1$. Đến đây, có hai khả năng:
      • Nếu $ m=1$ thì phương trình đã cho trở thành $$ 0x^2+0x+9=0 $$ Phương trình này rõ ràng vô nghiệm.
      • Nếu $ m=-1$ thì phương trình đã cho trở thành $$ 0x^2-12x+9=0 $$ Phương trình này có nghiệm $ x=\frac{3}{4}$.
    • Trường hợp 2. Nếu $ m\ne \pm 1$ thì phương trình đã cho là phương trình bậc hai có $$ \Delta’=9(m-1)^2-9\cdot (m^2-1) =18-18m$$ Chúng ta lại thấy trường hợp này có 3 khả năng:
      • Nếu $ \Delta<0 \Leftrightarrow m>1$ thì phương trình vô nghiệm;
      • Nếu $ \Delta=0 \Leftrightarrow m=1$, khả năng này không xảy ra vì chúng ta đang xét trường hợp 2 có điều kiện là $ m\ne \pm 1;$
      • Nếu $ \Delta >0 \Leftrightarrow m<1$, phương trình có 2 nghiệm phân biệt $ x=-3(m-1)\pm\sqrt{18-18m}$.

    Tóm lại, chúng ta có kết luận sau:

    • Khi $ m \geqslant 1$: Phương trình vô nghiệm;
    • Khi $ m=-1$: Phương trình có một nghiệm;
    • Khi $ m<1$ và $ m\ne -1$: Phương trình có hai nghiệm phân biệt.

    Ví dụ 6. Giải và biện luận phương trình bậc 2 theo tham số $m$ $$(m^2-4)x^2+3mx-6=0$$

    Hướng dẫn. Chúng ta

     

    Ví dụ 7. Tìm tất cả các giá trị thực của tham số $m$ để hai đồ thị hàm số $y = -x^2 – 2x + 3$ và $y = x^2 – m$ có điểm chung?

    Hướng dẫn. Hoành độ giao điểm của hai đồ thị hàm số $y = -x^2 – 2x + 3$ và $y = x^2 – m$ là nghiệm của phương trình $$y = -x^2 – 2x + 3= x^2 – m$$ Do đó, hai đồ thị hàm số có điểm chung khi và chỉ khi phương trình trên có nghiệm.

     

    3. Tìm điều kiện để phương trình có 3 nghiệm, 4 nghiệm…

    Ngoài việc biện luận phương trình bậc hai, chúng ta còn gặp một số phương trình quy về bậc 2. Cụ thể xin xem trong ví dụ sau:

    Ví dụ 1. Tìm điều kiện của $m$ để phương trình sau có 3 nghiệm phân biệt $$(x^2 – 3x + m)(x – 1) = 0$$

    Hướng dẫn. Phương trình đã cho tương đương với \begin{align} \left[\begin{array}{lr} x-1=0&(1)\\ x^2 – 3x + m=0&(2)
    \end{array}\right. \end{align}

    Rõ ràng rằng phương trình đã cho luôn có một nghiệm $x=1$. Do đó, phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt và khác $1$. Điều kiện cần và đủ là $$ \begin{cases} \Delta = 9-4m >0\\ 1^2-3+m\ne 0
    \end{cases} $$ Giải hệ này tìm được điều kiện $ m<\frac{9}{4}$ và $ m\ne 2.$

    Ví dụ 2. Tìm điều kiện của $m$ để phương trình sau có 3 nghiệm phân biệt $$x^3-3mx^2+2mx+m-1= 0$$

    Hướng dẫn. Chúng ta đoán được phương trình $x^3-3mx^2+2mx+m-1= 0$ có nghiệm $x=1$ nên phân tích phương trình đã cho thành $$\left( x-1\right) \left( x^{2}+\left( 1-3m\right) x-m+1\right) =0$$

    Do đó, phương trình đã cho tương đương với \begin{align} \left[\begin{array}{lr} x-1=0&(1)\\ x^{2}+\left( 1-3m\right) x-m+1=0&(2) \end{array}\right. \end{align} Do đó, phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt khác $1$. Điều kiện cần và đủ là $$ \begin{cases} \Delta = (1-3m)^2-4(1-m) >0\\ 1^2+(1-3m)-m+1\ne 0 \end{cases} $$ Giải hệ này tìm được điều kiện $ m<\frac{1-2\sqrt{7}}{9}$ hoặc $ m>\frac{1+2\sqrt{7}}{9}.$

    Ví dụ 3. Tìm điều kiện của $m$ để phương trình sau có 2 nghiệm phân biệt $$\frac{x^2-2x+m}{x-3} = 0$$

    Hướng dẫn. Ta có điều kiện xác định của phương trình là $x\ne 3$. Với điều kiện đó, phương trình đã cho tương đương với $$x^2-2x+m=0(*)$$ Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt và thỏa mãn điều kiện, tức phải khác $3$. Điều kiện cần và đủ là $$ \begin{cases} \Delta = 2^2-4m >0\\ 3^2-2\cdot 3+m\ne 0 \end{cases} $$ Từ đó tìm được đáp số

    Ví dụ 4. Tìm điều kiện của $m$ để phương trình sau có 2 nghiệm phân biệt $$\frac{mx^2-2(m-1)x+m}{\sqrt{x – 2}} = 0$$

    Hướng dẫn. Ta có điều kiện xác định là $x>2$. Cần tìm điều kiện để phương trình $mx^2-2(m-1)x+m=0$ có 2 nghiệm phân biệt và thỏa mãn điều kiện $x>2$.

    Ví dụ 5. Tìm điều kiện của $m$ để phương trình sau có 4 nghiệm phân biệt $$x^4-3mx^2+5= 0$$

    Hướng dẫn. Ta đặt $t=x^2$ thì có điều kiện của $t$ là $t>0$. Phương trình đã cho trở thành phương trình bậc 2 ẩn $t$ $$t^2-3mt+5$$ Nhận thấy rằng với mỗi nghiệm $t>0$ thì tìm được 2 nghiệm $x$ là $\pm\sqrt{t}$. Nên, phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình ẩn $t$ có 2 nghiệm $t$ phân biệt và dương. Điều kiện cần và đủ là $$ \begin{cases} \Delta >0\\ S>0\\ P>0 \end{cases} $$

  • Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    Phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước

    1. Phương trình bậc hai là gì?

    Phương trình bậc hai (ẩn $x$) là phương trình có dạng $$ax^2+bx=0$$ trong đó $a\ne 0$.

    Cách giải phương trình bậc 2. Chúng ta tính đại lượng sau (đặt là $\Delta$) $$\Delta=b^2-4ac$$ Khi đó, tùy vào giá trị dương, âm, bằng không của $\Delta$ mà chúng ta có kết luận về nghiệm của phương trình bậc 2.

    • $\Delta<0$: Phương trình vô nghiệm;
    • $\Delta=0$: Phương trình có một nghiệm $ x=\frac{-b}{2a}$, đôi khi ta còn gọi là nghiệm kép;
    • $\Delta>0$: Phương trình có hai nghiệm (phân biệt), đặt là $ x_1,x_2$ được tính bởi $$ x_1=\frac{-b-\sqrt{\Delta}}{2a}, x_2=\frac{-b+\sqrt{\Delta}}{2a}. $$

    Xem thêm:

    Ví dụ 1. Giải phương trình $x^2-4x-6=0$

    Chúng ta có các hệ số $a=1,b=-4,c=-6$ nên tính được $$ \Delta=(-4)^2-4\cdot 1\cdot (-6)=40 $$ Vì $ 40>0$ nên phương trình có hai nghiệm phân biệt $ \frac{-(-4)+\sqrt{40}}{2}$ và $ \frac{-(-4)-\sqrt{40}}{2}$. Rút gọn hai nghiệm này được $ 2+\sqrt{10}$ và $ 2-\sqrt{10}$.

    Ví dụ 2. Giải phương trình $x^2-3x+6=0$

    Chúng ta có các hệ số $a=1,b=3,c=6$ nên tính được $$ \Delta=3^2-4\cdot 1\cdot 6=-15 $$ Vì $ -15<0$ nên phương trình vô nghiệm.

    Ví dụ 3. Giải phương trình $x^2-2x+1=0$

    Chúng ta có các hệ số $a=1,b=-2,c=1$ nên tính được $$ \Delta=(-2)^2-4\cdot 1\cdot 1=0 $$ nên phương trình có một nghiệm là $x=\frac{-(-2)}{2}=1$.

    Lưu ý, nếu hệ số $b$ chẵn, tức là có dạng $b=2b’$ thì có thể tính $\Delta’=b’^2-ac$ thay cho $\Delta$. Lúc đó, công thức nghiệm là $\frac{-b’\pm\sqrt{\Delta’}}{a}$.

    Ví dụ 4. Giải phương trình $x^2-4x-6=0$

    Chúng ta có các hệ số $a=1,b=-4,c=-6$. Nhận thấy $b=2\cdot(-2)$ nên tính $$ \Delta’=(-2)^2-\cdot 1\cdot (-6)=10 $$ Vì $ 10>0$ nên phương trình có hai nghiệm phân biệt $ \frac{-(-2)+\sqrt{10}}{1}$ và $ \frac{-(-2)-\sqrt{10}}{1}$. Rút gọn hai nghiệm này được $ 2+\sqrt{10}$ và $ 2-\sqrt{10}$, chính là hai nghiệm ở ví dụ 1.

    2. Phương trình bậc hai có nghiệm khi nào?

    Như vậy, phương trình bậc hai có nghiệm khi và chỉ khi $$\Delta \geqslant 0$$

    Lúc đó, chúng ta có định lý Viète như sau $$ \begin{cases} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a} \end{cases} $$

    Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có nghiệm $$x^2-3x+m-5=0$$ Phương trình đã cho có nghiệm khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) \geqslant 0\\ \Leftrightarrow & 29-4m \geqslant 0\\ \Leftrightarrow & m \leqslant \frac{29}{4} \end{align}

    3. Phương trình bậc hai có 2 nghiệm (phân biệt) khi nào?

    Phương trình bậc hai có 2 nghiệm (phân biệt) khi và chỉ khi $$\Delta >0.$$

    Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có 2 nghiệm phân biệt $$x^2-3x+m-5=0$$ Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) > 0\\ \Leftrightarrow & 29-4m > 0\\ \Leftrightarrow & m <\frac{29}{4} \end{align}

    4. Phương trình bậc hai vô nghiệm khi nào?

    Phương trình bậc hai có 2 nghiệm (phân biệt) khi và chỉ khi $$\Delta <0.$$

    Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có 2 nghiệm phân biệt $$x^2-3x+m-5=0$$ Phương trình đã cho vô nghiệm khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) < 0\\ \Leftrightarrow & 29-4m < 0\\ \Leftrightarrow & m >\frac{29}{4} \end{align}

    5. Phương trình bậc hai có 2 nghiệm dương khi nào?

    Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) dương khi và chỉ khi $$ \begin{cases} \Delta >0\\
    x_1+x_2=\frac{-b}{a}>0\\ x_1 \cdot x_2 =\frac{c}{a}>0 \end{cases} $$

    6. Phương trình bậc hai có 2 nghiệm âm khi nào?

    Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) âm khi và chỉ khi $$ \begin{cases} \Delta >0\\
    x_1+x_2=\frac{-b}{a}<0\\ x_1 \cdot x_2 =\frac{c}{a}>0 \end{cases} $$

    7. Phương trình bậc hai có hai nghiệm trái dấu?

    Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) trái dấu khi và chỉ khi $$  x_1 \cdot x_2 =\frac{c}{a}<0 $$ hoặc đơn giản hơn là $$ac<0.$$

    8. Phương trình bậc hai có hai nghiệm lớn hơn một số, nhỏ hơn một số cho trước (định lý đảo)

    Phương trình bậc hai $f(x)=ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) $ x_1,x_2$ (giả sử $ x_1<x_2$) và thỏa mãn yêu cầu

    • $ x_1<\alpha <x_2$: điều kiện cần và đủ là $ a\cdot f(\alpha) <0$
    • $ x_1< x_2<\alpha $: điều kiện cần và đủ là $ \begin{cases} \Delta >0\\ a\cdot f(\alpha) >0\\ \frac{x_1+x_2}{2} <\alpha
      \end{cases}$
    • $ \alpha <x_1< x_2 $: điều kiện cần và đủ là $ \begin{cases} \Delta >0\\ a\cdot f(\alpha) >0\\ \frac{x_1+x_2}{2} >\alpha \end{cases}$
  • Phương trình chứa trị tuyệt đối

    Phương trình chứa trị tuyệt đối

    Phương trình chứa trị tuyệt đối

    Để giải phương trình chứa trị tuyệt đối chúng ta có thể sử dụng hai cách chính là bình phương hai vế để khử dấu giá trị tuyệt đối, hoặc sử dụng định nghĩa giá trị tuyệt đối để xét các trường hợp (có thể lập bảng để việc phá dấu giá trị tuyệt đối được dễ dàng hơn).

    Xem thêm:

    1. Cách giải phương trình chứa trị tuyệt đối

    Trước tiên, chúng ta nhắc lại định nghĩa giá trị tuyệt đối của một số: $$ |a|=\begin{cases} a& \text{nếu } x \geqslant 0\\ -a& \text{nếu } x <0 \end{cases} $$ Từ đó, chúng ta có cách giải 2 dạng phương trình chứa trị tuyệt đối như sau:

    1. $|A|=|B| \Leftrightarrow A=\pm B$;
    2. $ |A|= B$ ta xét hai khả năng:
      • nếu $ B <0$ thì phương trình vô nghiệm;
      • nếu $ B <0$ thì phương trình tương đương với $ A=\pm B$.

    Nếu $ B$ là một biểu thức chứa $ x$ thì phương trình đã cho tương đương với $$ \begin{cases} B \geqslant 0\\ A=\pm B
    \end{cases} $$ Để dễ cho việc kết hợp nghiệm, chúng ta thường tách thành hai trường hợp, hoặc hai hệ như sau: $$ |A|= B \Leftrightarrow \left[ \begin{array}{c} \begin{cases} B \geqslant 0\\ A=B \end{cases}\\ \begin{cases} B \geqslant 0\\ A=-B \end{cases} \end{array}\right. $$

    2. Ví dụ giải phương trình chứa trị tuyệt đối

    Ví dụ 1. Giải phương trình $$|x-3|=|2x+1|.$$

    Hướng dẫn. Phương trình đã cho tương đương với $$ \left[\begin{array}{l} x-3=2x+1\\ x-3=-(2x+1)\end{array}\right.
    \Leftrightarrow \left[\begin{array}{l}x=-4\\x=2\end{array}\right.$$

    Ví dụ 2. Giải phương trình $$|x-3|=|x^2+3x-1|.$$

    Hướng dẫn. Phương trình đã cho tương đương với \begin{align}
    &\left[\begin{array}{l} x-3=x^2+3x-1\\ x-3=-(x^2+3x-1)\end{array}\right.\\
    \Leftrightarrow & \left[\begin{array}{l} x^2+2x+2=0\text{ (vô nghiệm)}\\ x^2+4x-4=0\end{array}\right.\\
    \Leftrightarrow & x=-2\pm 2\sqrt{2}.
    \end{align}

    Ví dụ 3. Giải phương trình $$|x+5|=3x+10.$$

    Hướng dẫn. Cách thứ nhất, chúng ta chia hai trường hợp:

    • Trường hợp 1. Nếu $ x+5 \geqslant 0 \Leftrightarrow x \geqslant -5$ thì phương trình đã cho trở thành $$ x+5=3x+10. $$
      Giải phương trình này, tìm được $ x=-\frac{5}{2}$. Nghiệm này thỏa mãn điều kiện $ x \geqslant -5$ nên nhận.
    • Trường hợp 2. Nếu $ x+5 < 0 \Leftrightarrow x < -5$ thì phương trình đã cho trở thành $$ -x-5=3x+10. $$ Giải phương trình này, tìm được $ x=-\frac{15}{4}$. Nghiệm này không thỏa mãn điều kiện $ x \geqslant -5$ nên loại.

    Kết luận, phương trình đã cho có nghiệm duy nhất $ x=-\frac{5}{2}.$

    Cách thứ hai, chúng ta biến đổi tương đương phương trình đã cho tương đương với hệ: \begin{align} &\begin{cases} 3x+10 \geqslant 0\\ \left[\begin{array}{l} x+5=3x+10\\x+5=-(3x+10)\end{array}\right. \end{cases} \\
    \Leftrightarrow & \begin{cases} x\geqslant \frac{-10}{3}\\ \left[\begin{array}{l} x=-\frac{5}{2}\\x=-\frac{15}{4}\end{array}\right. \end{cases} \\
    \Leftrightarrow & x=-\frac{5}{2}. \end{align}

    Ví dụ 4. Giải phương trình $$|3x – 2| = x^2+ 2x + 3.$$

    Hướng dẫn. Chúng ta xét hai trường hợp:

    • Trường hợp 1. Khi $3x-2 \geqslant 0 \Leftrightarrow x \geqslant \frac{2}{3}$ thì phương trình đã cho trở thành $$3x-2 =x^2+2x+3.$$ Phương trình này vô nghiệm.
    • Trường hợp 2. Khi $3x-2 < 0 \Leftrightarrow x < \frac{2}{3}$  thì phương trình đã cho trở thành $$-3x+2=x^2+2x+3.$$ Giải phương trình này, tìm được $x=\frac{-5\pm \sqrt{21}}{2}$. So sánh với điều kiện $x < \frac{2}{3}$ thấy cả hai nghiệm đều thỏa mãn.

    Kết luận. Phương trình đã cho có hai nghiệm là $\frac{-5\pm \sqrt{21}}{2}$.

    Ví dụ 5. Giải phương trình $$ \frac{x-1}{2x-3}=\frac{-3x+1}{|x+1|}. $$

    Hướng dẫn. Điều kiện $x\ne -1, x\ne \frac{3}{2}$. Chúng ta xét hai trường hợp:

    • Trường hợp 1. Nếu $x+1>0 \Leftrightarrow x>-1$ thì phương trình đã cho trở thành $$ \frac{x-1}{2x-3}=\frac{-3x+1}{x+1}. $$ Biến đổi phương trình này được $$\frac{7x^{2}-11x+2}{-2x^{2}+x+3}=0.$$ Giải phương trình này được nghiệm $x=\frac{11\pm \sqrt{65}}{14}$. So sánh thấy cả hai đều thỏa mãn các điều kiện $x\ne -1, x\ne \frac{3}{2}$ và $x>-1$ nên nhận cả hai nghiệm.
    • Trường hợp 2. Nếu $x+1<0 \Leftrightarrow x<-1$ thì phương trình đã cho trở thành $$ \frac{x-1}{2x-3}=\frac{-3x+1}{-x-1}. $$ Giải phương trình này được nghiệm $x=\frac{11\pm \sqrt{41}}{10}$. So sánh thấy cả hai không thỏa mãn điều kiện $x<-1$ nên loại cả hai nghiệm.

    Kết luận, tập nghiệm của phương trình đã cho là $S=\{\frac{11\pm \sqrt{65}}{14}\}.$

    Ví dụ 6. Giải phương trình chứa dấu giá trị tuyệt đối sau: $$ x^2+4x-3|x+2|+4=0. $$

    Hướng dẫn. Chúng ta xét hai trường hợp:

    • Trường hợp 1. Khi $x+2\geqslant 0 \Leftrightarrow x>\geqslant -2$ thì phương trình đã cho trở thành $$ x^2+4x-3(x+2)+4=0.$$ Giải phương trình này được nghiệm $x=-2,x=1$. Cả hai đều thỏa mãn điều kiện $x \geqslant -2$ nên nhận cả hai nghiệm.
    • Trường hợp 2. Khi $x+2 <0 \Leftrightarrow x> <-2$ thì phương trình đã cho trở thành $$ x^2+4x+3(x+2)+4=0.$$ Giải phương trình này được nghiệm $x=-2,x=-5$. So sánh điều kiện $x <-2$ thì $x=-2$ bị loại, $x=-5$ thỏa mãn.

    Kết luận, tập nghiệm của phương trình đã cho là $S=\{-5,-2,1\}$.

    Đối với phương trình chứa nhiều dấu giá trị tuyệt đối mà không rơi vào các dạng trên, chúng ta thường lập bảng khử dấu giá trị tuyệt đối như sau.

    Ví dụ 7. Giải phương trình chứa dấu giá trị tuyệt đối sau: $$ |x+1|+|x-1|=4. $$

    Hướng dẫn. 

    Ta lập bảng như sau, gọi là bảng khử dấu giá trị tuyệt đối hoặc bảng phá dấu giá trị tuyệt đối:

    giải phương trình chứa trị tuyệt đối băng cách lập bảng khử phá dấu giá trị tuyệt đối

    Từ đó, dễ dàng chia thành ba trường hợp:

    • Trường hợp 1. Khi $x<-1$ thì phương trình đã cho trở thành $$-2x=4 \Leftrightarrow x=-2.$$ Rõ ràng nghiệm này thỏa mãn điều kiện $x<-1$ nên nhận.
    • Trường hợp 2. Khi $-1 \leqslant   x<1$ thì phương trình đã cho trở thành $$2=4.$$ Phương trình này vô nghiệm,
    • Trường hợp 3. Khi $1 \leqslant x$ thì phương trình đã cho trở thành $$2x=4 \Leftrightarrow x=2.$$ Nghiệm này cũng thỏa mãn điều kiện $x \geqslant 1$ nên nhận.

    Tóm lại, phương trình đã cho có hai nghiệm $x=\pm 2$.

    Ví dụ 8. Giải phương trình chứa trị tuyệt đối: $$ |x+4|-2|x+5|=-7. $$

    Hướng dẫn. Lập bảng xét dấu tương tự ví dụ 7, đáp số $x=1,x=-13$.

  • Giải và biện luận phương trình ax+b=0

    Giải và biện luận phương trình ax+b=0

    Giải và biện luận phương trình ax+b=0

    Giải và biện luận phương trình bậc nhất $ax+b=0$ là một dạng toán quan trọng giúp học sinh rèn luyện khả năng lập luận, tư duy logic.

    Xem thêm Toán 10 – Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

    1. Giải và biện luận phương trình ax+b=0

    Để giải và biện luận phương trình $ax+b=0$, ta xét hai trường hợp:

    • Trường hợp 1. Nếu $ a\ne 0$ thì phương trình đã cho là phương trình bậc nhất nên có nghiệm duy nhất $$ x=-\frac{b}{a}.$$
    • Trường hợp 2. Nếu $ a = 0$ thì phương trình đã cho trở thành $ 0x+b=0$, lúc này:
      • Nếu $ b=0$ thì phương trình đã cho có tập nghiệm là $ \mathbb{R};$
      • Nếu $ b\ne 0$ thì phương trình đã cho vô nghiệm.

    Bảng tóm tắt cách giải và biện luận phương trình $ax+b=0$

    giai va bien luan phuong trinh ax+b=0

    Chú ý khi giải và biện luận phương trình bậc nhất:

    • Biến đổi để đưa phương trình đã cho về đúng dạng $ax+b=0$ trước khi xét các trường hợp.
    • Nếu phương trình đã cho có điều kiện thì cần kiểm tra nghiệm tìm được có thỏa mãn điều kiện hay không rồi mới kết luận.

    2. Ví dụ giải và biện luận phương trình ax+b=0

    Ví dụ 1. Giải và biện luận phương trình $ mx+2-m=0$.

    Chúng ta xét hai trường hợp:

    • Trường hợp 1. Nếu $ m=0$, phương trình đã cho trở thành $$ 0x+2=0 $$ Rõ ràng phương trình này vô nghiệm, nên phương trình đã cho vô nghiệm.
    • Trường hợp 2. Nếu $ m\ne 0$, phương trình đã cho là phương trình bậc nhất, nên nó có nghiệm duy nhất $ \displaystyle x=\frac{m-2}{m}.$

    Vậy, $ m=0$ thì phương trình đã cho vô nghiệm; $ m\ne 0$ thì phương trình đã cho có nghiệm duy nhất.

    Ví dụ 2. Giải và biện luận phương trình $ (m-2)x+2-m=0$.

    Chúng ta xét hai trường hợp:

    • Trường hợp 1. $ m-2=0$ hay $ m=2$ thì phương trình đã cho trở thành $$ 0x+0=0 $$ Rõ ràng phương trình này có tập nghiệm là $ \mathbb{R}$ nên phương trình đã cho cũng có tập nghiệm là $ \mathbb{R}$.
    • Trường hợp 2. $ m\ne 2$, phương trình đã cho là phương trình bậc nhất, nên nó có nghiệm duy nhất $ \displaystyle x=\frac{m-2}{m-2}=-1.$

    Vậy, $ m=2$ thì phương trình đã cho có tập nghiệm là $ \mathbb{R}$; $ m\ne 2$ thì phương trình đã cho có nghiệm duy nhất $ x=-1$.

    Ví dụ 3. Giải và biện luận phương trình $ mx+(2-3m)x+5=0$.

    Hướng dẫn. Trước tiên chúng ta biến đổi phương trình đã cho về dạng $ ax+b=0$. Có, phương trình đã cho tương đương với $$ (2-2m)x+5=0 $$ Chúng ta xét hai trường hợp:

    • Trường hợp 1. $ 2-2m=0$ hay $ m=1$ thì phương trình đã cho trở thành $$ 0x+5=0 $$ Phương trình này vô nghiệm, nên phương trình đã cho vô nghiệm.
    • Trường hợp 2. $ m\ne 1$, phương trình đã cho là phương trình bậc nhất, nên nó có nghiệm duy nhất $ \displaystyle x=\frac{-5}{2-2m}.$

    Vậy, $ m=1$ thì phương trình đã cho vô nghiệm; $ m\ne 1$ thì phương trình đã cho có nghiệm duy nhất $ x=\frac{-5}{2-2m}$.

    Ví dụ 4. Giải và biện luận phương trình $ \frac{5x-m}{x-1}=0$.

    Hướng dẫn. Trước tiên chúng ta tìm điều kiện xác định của phương trình, sau đó biến đổi đưa phương trình về dạng quen thuộc $ ax+b=0.$

    • Điều kiện xác định: $ x\ne 1$. Với điều kiện đó, phương trình đã cho tương đương với $$ 5x-m=0 $$
    • Phương trình này có nghiệm $ x=\frac{m}{5}$. Tuy nhiên đây chưa phải nghiệm của phương trình đã cho vì cần có điều kiện $ x\ne 1$. Do đó chúng ta xét hai trường hợp:
      • Trường hợp 1. Nếu $ \frac{m}{5}=1$ hay $ m=5$ thì phương trình đã cho vô nghiệm.
      • Trường hợp 2. Nếu $ m\ne 5$ thì phương trình đã cho có nghiệm duy nhất $ x=\frac{m}{5}.$

    Tóm lại, $ m=5$ thì phương trình đã cho vô nghiệm; $ m\ne 5$ thì phương trình đã cho có nghiệm duy nhất $ x=\frac{m}{5}.$

    Ví dụ 5. Giải và biện luận phương trình $$ \frac{mx+2m}{x-3}=0 $$

    Ví dụ 6. Giải và biện luận phương trình $$ \frac{(m+1)x+2m}{x^2-4}=0 $$

    Ví dụ 7. Giải và biện luận phương trình $$ \frac{x+2-m}{\sqrt{x-4}}=0 $$

    Ví dụ 8. Tìm $m$ để phương trình $ (x-1)(x-3m)=0$ có hai nghiệm phân biệt.

    Ví dụ 9. Tìm $m$ để phương trình $ \sqrt{x-3}(x+5-m)=0$ có hai nghiệm phân biệt.

    Ví dụ 10. Tìm $m$ để phương trình $ (3-m)x+9-m^3=0$ có tập nghiệm là $ \mathbb{R}$.

    Ví dụ 11. Tìm $m$ để phương trình $ (3-m)x+9-m^3=0$ vô nghiệm.

    Ví dụ 12. Tìm $m$ để phương trình $ \frac{(3-m)x+3}{x-5}=0$ vô nghiệm.

    3. Bài tập giải và biện luận phương trình bậc nhất

    Bài 1. Giải và biện luận các phương trình sau theo tham số $m$:

    1. $mx = 3$
    2. $( m -2) x = m -2$
    3. $(2 m -1) x = 5m +3$
    4. $( m ^2-1) x =2 m +2$
    5. $m ( x -2)=x +1$
    6. $( m -1) x =2 x + m -3$
    7. $( m +1)( x -2)=3 m -1$
    8. $( m -1)( x +1)= m ^{2}-1$
    9. $( m -3) x = m ( m -1)-6$
    10. $(2 m -3) x = m (2 m -5)+3$
  • Phương pháp đặt ẩn phụ phương trình vô tỉ

    Phương pháp đặt ẩn phụ phương trình vô tỉ

    Phương pháp đặt ẩn phụ phương trình vô tỉ Phương pháp đặt ẩn phụ giải PT, bất phương trình chứa căn

    Để giải phương trình chứa căn (phương trình vô tỉ) thì phương pháp đặt ẩn phụ là một trong những cách hiệu quả để đưa một phương trình chứa căn, bất phương trình chứa căn phức tạp về các dạng phương trình, bất phương trình chứa căn cơ bản.

    Các phương pháp giải PT, BPT chứa căn khác là:

    1. Các dạng toán giải phương trình, bất phương trình bằng đặt ẩn phụ

    Phương pháp đặt ẩn phụ (còn gọi là đổi biến) giải phương trình, bất phương trình vô tỉ gồm có 4 dạng:

    • Đưa về phương trình một ẩn.
    • Đưa về phương trình đẳng cấp (phương trình thuần nhất).
    • Đưa về phương trình tích (phương pháp đặt ẩn phụ không hoàn toàn).
    • Đưa về hệ phương trình.

    2. Phương pháp đặt ẩn phụ đưa về phương trình, bất phương trình một ẩn mới

    Ví dụ 1. Giải phương trình $$\sqrt{3{{x}^{2}}-2x+9}+\sqrt{3{{x}^{2}}-2x+2}=7$$ Hướng dẫn. Đặt $t=\sqrt{3{{x}^{2}}-2x+2}$, điều kiện $t \ge 0$ ta thu được phương trình \[\begin{array}{*{20}{l}}
    {}&{\sqrt {{t^2} + 7} + t = 7}\\
    \Leftrightarrow &{\left\{ \begin{array}{l}
    7 – t \ge 0\\
    {t^2} + 7 = {(7 – t)^2}
    \end{array} \right.}\\
    \Leftrightarrow &{\left\{ \begin{array}{l}
    t \le 7\\
    {t^2} + 7 = 49 – 14t + {t^2}
    \end{array} \right.}\\
    \Leftrightarrow &{t = 3}
    \end{array}\] Với $ t=3, $ ta có phương trình \[\sqrt {3{x^2} – 2x + 2} = 3\]Bình phương hai vế phương trình này, tìm được nghiệm $ x=\frac{{1 \pm\sqrt {22} }}{3}.$

    Ví dụ 2. Giải bất phương trình $$\left( x+1 \right)\left( x+4 \right)<5\sqrt{{{x}^{2}}+5x+28}$$ Hướng dẫn. Ta có, bất phương trình đã cho tương đương với \[ {{x}^{2}}+5x+4<5\sqrt{{{x}^{2}}+5x+28} \] Lúc này đã thấy xuất hiện một biểu thức phức tạp và xuất hiện nhiều lần. Do đó, ta sử dụng phương pháp đặt ẩn phụ với $t=\sqrt{{{x}^{2}}+5x+28}$ điều kiện $ t\ge0 $ thì thu được bất phương trình \[ {{t}^{2}}-5t+24<0 \] Giải bất phương trình này được $-3<t<8$. Kết hợp điều kiện được $0<t<8$, do đó có $$\sqrt {{x^2} + 5x + 28} < 8 $$ Giải bất phương trình này tìm được $ – 9 < x < 4. $

    Ví dụ 3. Giải phương trình $$\sqrt{x+2}+\sqrt{5-x}+\sqrt{(x+2)(5-x)}=4$$ Hướng dẫn. Điều kiện $-2\le x\le 5$. Đặt $t=\sqrt{x+2}+\sqrt{5-x}$ điều kiện $ t\ge0. $ Suy ra \[ {{t}^{2}}=7+2\sqrt{x+2}\sqrt{5-x}=7+2\sqrt{\left( x+2 \right)\left( 5-x \right)} \] Do đó $ \sqrt{\left( x+2 \right)\left( 5-x \right)}=\dfrac{{{t}^{2}}-7}{2} $ và ta thu được phương trình \[ t + \frac{{{t^2} – 7}}{2} = 4 \] Giải phương trình bậc hai này tìm được $ t=3 $. Suy ra, ta có phương trình \[{\sqrt {x + 2} + \sqrt {5 – x} = 3}\] Hai vế của phương trình này đều không âm nên bình phương hai vế ta được phương trình tương đương \[\begin{array}{*{20}{c}}
    {}&{7 + 2\sqrt {(x + 2)(5 – x)} = 9}\\
    \Leftrightarrow &{\sqrt {(x + 2)(5 – x)} = 1}
    \end{array}\]Tiếp tục bình phương hai vế phương trình cuối cùng này ta tìm được đáp số $x={\frac{{3 \pm3\sqrt 5 }}{2}}$

    Ví dụ 4. Giải phương trình $$\sqrt{x-\sqrt{{{x}^{2}}-1}}+\sqrt{x+\sqrt{{{x}^{2}}-1}}=2$$ Hướng dẫn. Điều kiện $x\ge 1$. Nhận xét: $\sqrt{x-\sqrt{{{x}^{2}}-1}}.\sqrt{x+\sqrt{{{x}^{2}}-1}}=1$ nên đặt $t=\sqrt{x-\sqrt{{{x}^{2}}-1}}$ thì phương trình đã cho trở thành $$t+\frac{1}{t}=2\Leftrightarrow t=1$$ Với $t=1$, chúng ta có phương trình $\sqrt{x-\sqrt{{{x}^{2}}-1}}=1$. Bình phương hai vế phương trình này ta tìm được đáp số cuối cùng $x=1$.

    Ví dụ 5. Giải phương trình: $$2{{x}^{2}}-6x-1=\sqrt{4x+5}$$ Hướng dẫn. Điều kiện: $x\ge -\frac{4}{5}$. Ta sử dụng phương pháp đặt ẩn phụ với $t=\sqrt{4x+5}$ điều kiện $ t\ge 0 $ thì $x=\frac{{{t}^{2}}-5}{4}$. Thay vào ta có phương trình: \begin{align*}
    & 2.\frac{{{t}^{4}}-10{{t}^{2}}+25}{16}-\frac{6}{4}({{t}^{2}}-5)-1=t\\
    \Leftrightarrow\;& {{t}^{4}}-22{{t}^{2}}-8t+27=0\\
    \Leftrightarrow\;& ({{t}^{2}}+2t-7)({{t}^{2}}-2t-11)=0
    \end{align*} Ta tìm được bốn nghiệm là: ${{t}_{1,2}}=-1\pm 2\sqrt{2}$, ${{t}_{3,4}}=1\pm 2\sqrt{3}$. Kết hợp điều kiện được ${{t}_{1}}=-1+2\sqrt{2},{{t}_{3}}=1+2\sqrt{3}$. Từ đó tìm được các nghiệm của phương trình đã cho là $x=1-\sqrt{2}$ và $x=2+\sqrt{3}$.

    Ví dụ 6. Giải phương trình $$x+\sqrt{5+\sqrt{x-1}}=6$$ Hướng dẫn. Điều kiện: $1\le x\le 6$. Đặt $y=\sqrt{x-1}$ điều kiện $y\ge 0$ thì phương trình trở thành: $${{y}^{2}}+\sqrt{y+5}=5\Leftrightarrow {{y}^{4}}-10{{y}^{2}}-y+20=0$$ Với $y\le \sqrt{5}$ thì phương trình tương đương với $$({{y}^{2}}+y-4)({{y}^{2}}-y-5)=0\Leftrightarrow y=\frac{1+\sqrt{21}}{2},y=\frac{-1+\sqrt{17}}{2}$$ Từ đó ta tìm được các giá trị của $x=\frac{11-\sqrt{17}}{2}$.

    Ví dụ 7. [THTT 3-2005] Giải phương trình $$x=\left( 2004+\sqrt{x} \right){{\left( 1-\sqrt{1-\sqrt{x}} \right)}^{2}}$$ Hướng dẫn. Điều kiện $0\le x\le 1$. Đặt $y=\sqrt{1-\sqrt{x}}$ thì phương trình trở thành $$2{{\left( 1-y \right)}^{2}}\left( {{y}^{2}}+y-1002 \right)=0\Leftrightarrow y=1$$ Từ đó tìm được nghiệm $ x=0. $

    Ví dụ 8. Giải phương trình sau: $${{x}^{2}}+2x\sqrt{x-\frac{1}{x}}=3x+1$$ Hướng dẫn. Điều kiện $-1\le x<0$. Chia cả hai vế cho $ x $ ta được phương trình $$x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}$$ Đặt $t=x-\frac{1}{x}$. Đáp số $ x=\frac{1\pm \sqrt{5} }{2}.$

    Ví dụ 9. Giải phương trình $${{x}^{2}}+\sqrt[3]{{{x}^{4}}-{{x}^{2}}}=2x+1$$ Hướng dẫn. Nhận xét $x=0$ không phải là nghiệm nên chia cả hai vế cho $ x $ ta được: $$\left( x-\frac{1}{x} \right)+\sqrt[3]{x-\frac{1}{x}}=2$$ Đặt $t=\sqrt[3]{x-\frac{1}{x}}$ thu được phương trình $${{t}^{3}}+t-2=0$$ Giải phương trình này, tìm được $t=1$. Từ đó tìm được đáp số $ x=\frac{1\pm \sqrt{5}}{2}$.

    Ví dụ 10. Giải bất phương trình \[ \frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1 \] Hướng dẫn. Biến đổi bất phương trình đã cho thành \begin{align*}
    &\frac{1}{1-x^2}-1>\frac{3x}{\sqrt{1-x^2}}-2 \\
    \Leftrightarrow\;& \frac{x^2}{1-x^2}>3\cdot\frac{x}{\sqrt{1-x^2}}-2
    \end{align*} Đặt $ t= \frac{x}{\sqrt{1-x^2}}$ đưa về bất phương trình bậc hai ẩn $ t$ là \[{{t^2} > 3t – 2}\]

    Ví dụ 11. Tìm $ m $ để phương trình sau có nghiệm: $$ x(x-1)+4(x-1)\sqrt{\frac{x}{x-1}}=m $$ Hướng dẫn. Đặt $t=(x-1)\sqrt{\frac{x}{x-1}}$ thì $t\in \mathbb{R}$. Phương trình đã cho có nghiệm khi và chỉ khi phương trình ${{t}^{2}}+4t-m=0$ có nghiệm. Điều kiện cần và đủ là \[ \Delta \ge 0 \Leftrightarrow m\ge -4 \] Vậy với $ m\ge -4 $ thì phương trình đã cho có nghiệm.

    Ví dụ 12. Tìm $ m $ để bất phương trình $$ m\left( \sqrt{{{x}^{2}}-2x+2}+1 \right)+x(2-x)\le 0 $$ có nghiệm $x\in \left[ 0;1+\sqrt{3} \right]$.

    Hướng dẫn. Đặt $t=\sqrt{{{x}^{2}}-2x+2}$ thì $x\in [0;1+\sqrt{3}] $ nên $ t\in[1;2]. $ Khi đó bất phương trình đã cho tương đương với $$ m\le \frac{{{t}^{2}}-2}{t+1}\,\,\,\,(*)$$ Xét hàm số $f(t)=\frac{{{t}^{2}}-2}{t+1}$ trên $ [1,2] $ có $$f'(t)=\frac{{{t}^{2}}+2t+2}{{{(t+1)}^{2}}}>0$$ nên hàm số $ f(t) $ đồng biến trên đoạn $ [1,2]$

    Do đó, bất phương trình đã cho có nghiệm $x\in \left[ 0;\,\,1+\sqrt{3} \right]$ khi và chỉ khi bất phương trình $(*)$ có nghiệm $t\in [1,2]$ khi và chỉ khi $$m\le\underset{t\in \left[ 1;2 \right]}{\mathop{\max f(t)}}=f(2)=\frac{2}{3}$$ Vậy các giá trị cần tìm là $m\le\frac{2}{3}.$

    3. Phương pháp đặt ẩn phụ đưa về phương trình thuần nhất

    Phương trình thuần nhất (đẳng cấp) bậc hai hai ẩn \( x,y \) là phương trình có dạng $$ ax^2+bxy+cy^2=0 $$ Cách giải. Chúng ta có hai cách để xử lý phương trình thuần nhất bậc hai này:

    • Nếu $y=0$ thì $x=0$. Nếu $y\ne0$ ta chia cả hai vế cho $y^{2}$ và đặt $t=\frac{x}{y}$ được phương trình bậc hai $$at^{2}+bt+c=0$$
    • Nếu phương trình $ax^{2}+bx+c=0$ có hai nghiệm $M,N$ thì ta phân tích ngay phương trình đã cho thành \[\begin{array}{l}
      \,\,\,\,\,\,\,a{x^2} + bxy + c{y^2} = 0\\
      \Leftrightarrow a(x – My)(x – Ny)
      \end{array}\] mà không cần phải đặt $t=\frac{x}{y}$.

    Ví dụ 1. [Vào 10 Trần Phú – Hải Phòng] Giải phương trình $$ 5\sqrt{x^3+1}=2(x^2+2)$$ Hướng dẫn. Điều kiện $ x^3+1\ge0 \Leftrightarrow x\ge -1. $ Ta có $ x^3=1=(x+1)(x^2-x+1) $ mà $ (x+1)+(x^2-x+1)=x^2+2 $ tức là giữa căn thức và biểu thức còn lại có sự liên quan nhất định. Ta khai thác như thế nào?

    Viết lại phương trình đã cho thành \begin{align*}
    & 5\sqrt{(x+1)(x^2-x+1)}=2((x+1)+(x^2-x+1))\\
    \Leftrightarrow \;&5\sqrt{(x+1)(x^2-x+1)}=2((\sqrt{x+1})^2+(\sqrt{x^2-x+1})^2)
    \end{align*} Đặt $ a=\sqrt{x+1} $ và $ b=\sqrt{x^2-x+1} $ thì ta được phương trình $$ 5ab=2a^2+2b^2 $$ Phân tích đa thức thành nhân tử được $$2(a-2b)(a-\frac{1}{2}b)=0$$ Từ đó tìm được $a=2b $ hoặc $a=\frac{1}{2}b. $ Đáp số $ x=\frac{5\pm\sqrt{37}}{2}. $

    Ví dụ 2. Giải phương trình $$ 2(x^2-3x+2)=3\sqrt{x^3+8} $$ Hướng dẫn. Đáp số $ x=3\pm\sqrt{13}. $

    Ví dụ 3. Giải phương trình: $$2\left( {{x}^{2}}+2 \right)=5\sqrt{{{x}^{3}}+1}$$ Hướng dẫn. Đặt $u=\sqrt{x+1},v=\sqrt{{{x}^{2}}-x+1}$ thì phương trình trở thành: $$2\left( {{u}^{2}}+{{v}^{2}} \right)=5uv\Leftrightarrow \left[ \begin{array}{l}
    u=2v \\
    u=\frac{1}{2}v
    \end{array} \right.$$
    Tìm được đáp số $x=\frac{5\pm \sqrt{37}}{2}$.

    Ví dụ 4. Giải phương trình $$ 5\sqrt{x^5+x^3+x^2+1}=2\sqrt{x^6+5x^4+8x^2+4} $$ Hướng dẫn. Khi giải phương trình này, việc đầu tiên là tôi thử bình phương! Được một phương trình bậc 6, thử nhóm các kiểu, loay hoay một lúc mà không được. Tôi quay lại phương trình ban đầu, quan sát biểu thức $ x^6+5x^4+8x^2+4 $ tôi thấy có mũ 6, mũ 4 và mũ 2, toàn là lũy thừa chẵn. Tôi thử tách và thành công \begin{align*}
    x^6+5x^4+8x^2+4&=(x^6+x^4)+4(x^4+2x^2+1)\\
    &=(x^2+1)(x^4+4x^2+4)
    \end{align*} Quan sát biểu thức dưới căn ở vế trái, dễ dàng nhóm thành $ (x^2+1)(x^3+1) $. Do đó, phương trình ban đầu trở thành \[ 5\sqrt{x^3+1}=2(x^2+2) \] đây là phương trình đẳng cấp bậc hai đối với $ u=x+1,v=x^2-x+1. $

    Ví dụ 5. Giải bất phương trình  $$2{x^3} \le (1 + 2x – 3{x^2})\sqrt {2x + 1}$$ Hướng dẫn. Đặt $y=\sqrt{2x+1}$ điều kiện $ y\ge 0 $ thì $ {{y}^{2}}=2x+1 $ và do đó, bất phương trình đã cho trở thành: $$
    2{{x}^{3}}\le \left( {{y}^{2}}-3{{x}^{2}} \right)y\Leftrightarrow 2{{x}^{3}}+3{{x}^{2}}y-{{y}^{3}}\le 0\,\,\,(*)
    $$ Ta xét hai trường hợp:

    • $ y=0 $ tìm được nghiệm $ x=-\frac{1}{2}. $
    • $ y>0 $, chia cả hai vế bất phương trình $ (*) $ cho $ y^3 $ được \[\begin{array}{*{20}{l}}
      {}&{2{{\left( {\frac{x}{y}} \right)}^3} + 3{{\left( {\frac{x}{y}} \right)}^2} – 1 \le 0}\\
      \Leftrightarrow &{\left( {2\frac{x}{y} – 1} \right){{\left( {\frac{x}{y} + 1} \right)}^2} \le 0}\\
      \Leftrightarrow &{\frac{x}{y} \le \frac{1}{2}}\\
      \Leftrightarrow &{y \ge 2x}
      \end{array}\]Do đó, ta được
      $\sqrt {2x + 1} \ge 2x \Leftrightarrow \Bigg[ \begin{array}{l}
      \left\{ \begin{array}{l}
      x \le 0\\
      2x + 1 \ge 0
      \end{array} \right.\\
      \left\{ \begin{array}{l}
      x > 0\\
      2x + 1 \ge 4{x^2}
      \end{array} \right.
      \end{array} \Leftrightarrow \left[ \begin{array}{l}
      – \frac{1}{2} \le x \le 0\\
      0 < x \le \frac{{1 + \sqrt 5 }}{4}
      \end{array} \right.$

    Kết hợp hai trường hợp, được tập nghiệm là $S=\left[ -\frac{1}{2};\frac{1+\sqrt{5}}{2} \right]$.

    4. Phương pháp đặt ẩn phụ đưa về phương trình tích

    Đôi khi, phương pháp này còn được gọi là Phương pháp ẩn phụ không hoàn toàn. Chúng tôi sẽ có một bài viết chi tiết hơn về phương pháp này. Mời Quý thầy cô và các em học sinh đón xem.

    Ví dụ 1. [HSG 9 Thừa Thiên Huế 2003] Giải phương trình $$ x^2+3x+1=(x+3)\sqrt{x^2+1} $$ Hướng dẫn. Đặt $ t=\sqrt{x^2+1} $ thì phương trình trở thành $ t^2-(x+3)t+3x=0 $ là phương trình bậc hai đối với ẩn $ t. $

    Ta có $ \Delta=(x-3)^2\ge 0 \; \forall x$ do đó \[ \left[\begin{array}{l}
    t=x\\ t=3
    \end{array}\right. \Leftrightarrow \left[\begin{array}{l}
    \sqrt{x^2+1}=x\\ \sqrt{x^2+x}=3
    \end{array}\right. \Leftrightarrow x=\pm 2\sqrt{2}\] Vậy phương trình đã cho có nghiệm $ x=\pm 2\sqrt{2}. $

    Ví dụ 2. Giải phương trình $$ 2(1-x)\sqrt{x^2+2x-1}=x^2-2x-1.$$ Hướng dẫn. Đặt ẩn phụ không hoàn toàn $ t=\sqrt{x^2+2x-1} $ đưa về phương trình bậc hai theo $ t. $

    Đáp số $ x=-1\pm \sqrt{6}. $

    Cách khác: Các em có thể phân tích trực tiếp phương trình đã cho thành $ (x-1)^2-2(x-1)\sqrt{x^2+2x-1}-2=0 $

    Ví dụ 3. [HSG Vĩnh Long 2012] Giải phương trình: $$4\sqrt{{{x}^{2}}+x+1}=1+5x+4{{x}^{2}}-2{{x}^{3}}-{{x}^{4}}$$ Hướng dẫn. Ta sử dụng phương pháp đặt ẩn phụ với $t=\sqrt{{{x}^{2}}+x+1}$ điều kiện $t\ge \frac{\sqrt{3}}{2}$ thì phương trình $ (\ref{ap1}) $ trở thành: \begin{align*}
    &4t=-{{t}^{4}}+7{{t}^{2}}-5\\
    \Leftrightarrow \;&{{t}^{4}}-6{{t}^{2}}+9-\left( {{t}^{2}}-4t+4 \right)=0 \\
    \Leftrightarrow \;&{{\left( {{t}^{2}}-3 \right)}^{2}}-{{\left( t-2 \right)}^{2}}=0\\
    \Leftrightarrow \;&\left( {{t}^{2}}-t-1 \right)\left( {{t}^{2}}+t-5 \right)=0
    \end{align*} Tìm được $t=\frac{1+\sqrt{5}}{2}$ và $t=\frac{-1+\sqrt{21}}{2}$. Từ đó tìm được hai nghiệm là $ x=\frac{-1-\sqrt{19-2\sqrt{21}}}{2}$ và $x=\frac{-1+\sqrt{19-2\sqrt{21}}}{2}$.

    5. Phương pháp đặt ẩn phụ đưa về hệ phương trình

    Ví dụ 1. Giải phương trình $$2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0$$ Hướng dẫn. Điều kiện: $x\le \frac{6}{5}$. Đặt $\left\{ \begin{array}{l}
    u=\sqrt[3]{3x-2} \\
    v=\sqrt{6-5x}
    \end{array} \right. $ thì chúng ta có $ \left\{ \begin{array}{l}
    {{u}^{3}}=3x-2 \\
    {{v}^{2}}=6-5x
    \end{array} \right.$

    Do đó, ta có hệ phương trình $$\left\{ \begin{array}{l}
    2u+3v=8 \\
    5{{u}^{3}}+3{{v}^{2}}=8 \end{array} \right.$$ Giải hệ này ta được $\left\{ \begin{array}{l} u=-2 \\
    v=4 \end{array} \right.\Rightarrow \left\{ \begin{array}{l}
    3x-2=-2 \\
    6-5x=16 \end{array} \right.\Rightarrow x=-2$.

    Thử lại, thấy $x=-2$ là nghiệm của PT. Vậy PT có nghiệm duy nhất $x=-2$.

    Ví dụ 2. Giải phương trình $$2\text{x}+1+x\sqrt{{{x}^{2}}+2}+(x+1)\sqrt{{{x}^{2}}+2\text{x}+3}=0 $$ Hướng dẫn. Đặt $\begin{cases}
    u=\sqrt{{{x}^{2}}+2} \\
    v=\sqrt{{{x}^{2}}+2x+3}
    \end{cases}
    $ điều kiện $ u,v>0 $ thì $$
    \begin{cases}
    {{u}^{2}}={{x}^{2}}+2 \\
    {{v}^{2}}={{x}^{2}}+2x+3 \\
    \end{cases}
    \Rightarrow \begin{cases}
    {{v}^{2}}-{{u}^{2}}=2x+1 \\
    {{x}^{2}}=\frac{{{v}^{2}}-{{u}^{2}}-1}{2} \\
    \end{cases}$$ Thay vào phương trình đã cho được $$(v-u)\left( (v-u)\left( 1+\frac{v+u}{2} \right)+\frac{1}{2} \right)=0\Leftrightarrow\left[ \begin{array}{l}
    v-u=0\\
    (v+u)\left( 1+\frac{v+u}{2} \right)+\frac{1}{2}=0\\
    \end{array} \right.$$ Vì $ u,v>0 $ nên suy ra $ u=v. $

    Vậy phương trình đã cho  tương đương với $$  v=u\Leftrightarrow \sqrt{{{x}^{2}}+2x+3}=\sqrt{{{x}^{2}}+2}\Leftrightarrow x=-\frac{1}{2} $$

  • Hoán vị – Tổ hợp – Chỉnh hợp

    Hoán vị – Tổ hợp – Chỉnh hợp

    Hoán vị – Tổ hợp – Chỉnh hợp

    Để giải quyết các bài toán đếm, ngoài 3 quy tắc đếm cơ bản, chúng ta còn cần thêm một số kiên thức nữa mới giúp việc trình bày lời giải một cách ngắn gọn, đơn giản. Chẳng hạn, các bài toán sau đều cần sử dụng công thức về hoán vị, tổ hợp, chỉnh hợp:

    Các bạn Xuân, Hạ, Thu, Đông đi chụp ảnh kỉ niệm, ông thợ ảnh sắp xếp bốn bạn thành một hàng ngang. Hỏi ông ta có mấy cách sắp xếp?
    Lớp 11A có 40 học sinh. Cô chủ nhiệm muốn chọn ra 5 học sinh để làm ban cán sự lớp gồm: 1 lớp trưởng, 1 lớp phó lao động, 1 lớp phó học tập, 1 lớp phó văn nghệ và 1 thủ quỹ. Hỏi cô có bao nhiêu cách chọn?
    Vẫn lớp 11A đó, cô giáo muốn chọn ra 5 học sinh để đi dự lễ kỉ niệm ngày Quốc khánh. Hỏi cô có bao nhiêu cách?

    Hoán vị Tổ hợp Chỉnh hợp

    Xem thêm 1000 bài toán Đại số Tổ hợp – Xác Suất có lời giải

    1. Khái niệm Hoán vị – Tổ hợp – Chỉnh hợp

    1.1. Hoán vị

    Cho tập hợp $ A $ gồm $ n $ phần tử $ (n\ge 1) $. Mỗi cách sắp xếp thứ tự $ n $ phần tử của tập hợp $ A $ được gọi là một hoán vị của $ n $ phần tử đó.

    Gọi $ P_n $ là số các hoán vị của tập gồm $ n $ phần tử thì ta có \[ P_n=n!=n(n-1)(n-2)….3.2.1 \]

    1.2. Chỉnh hợp.

    Cho tập hợp $ A $ gồm $ n $ phần tử $ (n\ge 1) $. Mỗi bộ gồm $ k $ phần tử $ (0\le k\le n) $ sắp thứ tự của tập hợp $ A $ được gọi là chỉnh hợp chập $ k $ của $ n $ phần tử đã cho. Gọi $ A^k_n $ là số chỉnh hợp chập $ k $ của $ n $ phần tử, thì ta có \[ A^k_n=n(n-1)(n-2)…(n-k+1)=\frac{n!}{(n-k)!} \]

    1.3. Tổ hợp.

    Mỗi tập con gồm $ k $ phần tử của tập hợp $ A $ được gọi là một tổ hợp chập $ k $ của $ n $ phần tử đã cho. Gọi $ C^k_n $ là số tổ hợp chập $ k $ của $ n $ phần tử, thì ta có \[ C^k_n=\frac{n!}{k!(n-k)!}=\frac{A^k_n}{k!} \]

    1.4. Các tính chất của hoán vị, tổ hợp, chỉnh hợp

    • $ n!=n\cdot (n-1)! $
    • $ C^k_n=C^{n-k}_n $
    • $ C^k_n+C^{k+1}_n=C^{k+1}_{n+1} $

    1.5. Phân biệt hoán vị, chỉnh hợp, tổ hợp

    Hoán vị và chỉnh hợp có phân biệt thứ tự, vị trí, chức năng, vai trò, nhiệm vụ… giữa các phần tử được chọn ra; còn tổ hợp thì không!

    Để chọn ra các chỉnh hợp chập $ k $ của $ n $ phần tử có thể hiểu là gồm hai bước:

    • Bước 1. Chọn ra $ k $ phần tử của $ n $ phần tử, nên có $ C^k_n $ cách.
    • Bước 2. Ứng với mỗi $ k $ phần tử được chọn, ta đem sắp xếp cả $ k $ phần tử này vào các thứ tự (nhiệm vụ…) khác nhau nên bước này có $ k! $ cách.

    Như vậy, theo quy tắc nhân có $ k!C^k_n $ cách, nghĩa là $ A^k_n=k!C^k_n $ hay $ C^k_n=\frac{A^k_n}{k!} $

    2. Các dạng toán về hoán vị – tổ hợp – chỉnh hợp

    2.1. Bài toán đếm

    Để giải quyết các bài toán đếm, ta có hai cách làm: đếm trực triếp (hỏi gì đếm nấy) và đếm gián tiếp (đây chính là sử dụng nguyên lý bù trừ đã nói ở bài 3 quy tắc đếm cơ bản và bài tập vận dụng, tức là đếm phần dễ đếm để suy ra phần cần đếm). Chúng ta sẽ lần lượt xét hai cách đó qua các ví dụ sau. Đầu tiên là phương pháp đếm trực tiếp:

    Ví dụ 1. Từ 5 chữ số $ 1, 2, 3, 4, 5 $ có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau?

    Hướng dẫn. Mỗi cách sắp xếp bộ 5 chữ số $ 1,2,3,4,5 $ cho ta một số tự nhiên. Nói cách khác, mỗi một số tự nhiên cần lập tương ứng với một hoán vị của 5 phần tử đã cho. Do đó, có tất cả $ 5!=120 $ số.

    Ví dụ 2. Trong mặt phẳng cho 5 điểm phân biệt. Hỏi có bao nhiêu đoạn thẳng, bao nhiêu véctơ được tạo thành từ 5 điểm đó?

    Hướng dẫn. Mỗi một đoạn thẳng tương ứng với một tổ hợp chập 2 của 5 phần tử, nên có $ C^2_5=10 $ đoạn thẳng.

    Mỗi một véctơ tương ứng với một chỉnh hợp chập hai của 5 phần tử, nên có $ A^2_5= 20$ véctơ.

    Ví dụ 3. Từ các chữ số $ 0, 1, 2, 3, 4 $ có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau?

    Hướng dẫn. Giả sử số cần lập là $ \overline{a_1a_2a_3a_4a_5} $ trong đó $ a_1\ne 0 $ và $ a_i\ne a_j. $ Để tạo thành số thỏa mãn yêu cầu ta phải trải qua hai bước:

    • Bước 1. Chọn $ a_1\ne 0 $ nên có 4 cách chọn, sau bước này còn lại $ 4 $ số chưa được chọn.
    • Bước 2. Sắp xếp bốn chữ số còn lại vào bốn vị trí còn lại, có $ 4!=24 $ cách.

    Như vậy, theo qui tắc nhân, ta có $ 4.24=96 $ số thỏa mãn yêu cầu.

    Ví dụ 4. [CĐ KTKT 2006] Cho tập $ E=\{1,2,3,4,5,6,7\} $. Từ tập $ E $ lập được bao nhiêu số chẵn có 5 chữ số khác nhau?

    Hướng dẫn. Giả sử số cần lập là $ \overline{a_1a_2a_3a_4a_5} $ trong đó $a_i\in E, a_1\ne 0 $ và $ a_i\ne a_j,a_5 $ chẵn. Để lập được số thỏa mãn yêu cầu ta tiến hành hai bước:

    • Chọn $ a_5 $ chẵn từ các số $ 2,4,6 $: Có 3 cách.
    • Còn lại 6 chữ số chưa được chọn. Mỗi cách chọn có phân biệt thứ tự bộ 4 số $ a_1,a_2,a_3,a_4 $ từ 6 chữ số còn lại là một chỉnh hợp chập $ 4 $ của 6 phần tử. Do đó, có $ A^4_6=360 $ cách.

    Theo quy tắc nhân, có $ 3.360=1080 $ số thỏa mãn yêu cầu.

    Ví dụ 5. [CĐ2007] Từ các chữ số $ 0,1,2,3,4,5 $ có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và chia hết cho 3?
    Hướng dẫn. Gọi số cần lập là $ \overline{a_1a_2a_3a_4a_5} $ với $ a_i\ne a_j, a_1\ne 0, (a_1+a_2+a_3+a_4+a_5) $ chia hết cho 3.

    Có 6 chữ số tất cả, mà lập số có 5 chữ số khác nhau nên số cần lập được tạo thành từ các chữ số: $ 0,1,2,3,4 $ hoặc $ 0,1,2,3,5 $ hoặc $ 0,1,2,4,5 $ hoặc $ 0,1,3,4,5$ hoặc $ 0,2,3,4,5 $ hoặc $ 1,2,3,4,5. $

    Trong 6 trường hợp này, chỉ có hai trường hợp thỏa mãn yêu cầu $ a_1+a_2+a_3+a_4+a_5 $ chia hết cho 3. Do đó ta xét hai trường hợp:

    • TH1. Số cần lập được tạo thành từ các chữ số $ 1,2,3,4,5 $. Mỗi số cần lập tương ứng với một hoán vị của 5 phần tử, nên có $ 5!=120 $ số.
    • TH2. Số cần lập được tạo thành từ các chữ số $ 0,1,2,4,5 $. Ta tiến hành 2 bước:
      • Bước 1. Chọn $ a_1\ne 0 $: Có 4 cách chọn.
      • Sắp xếp 4 chữ số còn lại vào 4 vị trí còn lại: Có $ 4!=24 $ cách.
        Theo qui tắc nhân, TH2 có $ 4.24=96 $ số.

    Vậy, có tất cả $ 120+96=216 $ số thỏa mãn yêu cầu.

    Ví dụ 6. [CĐ SPTW 2007] Một tổ học sinh 10 người gồm 6 nam và 4 nữ. Hỏi có bao nhiêu cách chọn ra nhóm 5 người để làm trực nhật mà nhóm đó có không quá một nữ?

    Hướng dẫn. Vì nhóm đó có không quá một nữ nên ta xét hai phương án:

    • Phương án 1: Nhóm gồm 1 nữ và 4 nam. Việc lập nhóm gồm 2 bước:
      • Chọn 1 nữ từ 4 nữ, có $ C^1_4=4 $ cách.
      • Sau đó, chọn 4 nam từ 6 nam, có $ C^4_6=15 $ cách.

    Theo quy tắc nhân, phương án 1 có $ 4.15=60 $ cách.

    • Phương án 1: Nhóm gồm 0 nữ và 5 nam. Chọn 5 học sinh nam từ nhóm 6 học sinh nam, nên có $ C^5_6=6 $ cách.

    Theo quy tắc cộng, ta có $ 60+6=66 $ cách chọn nhóm 5 người thỏa mãn yêu cầu.

    Ví dụ 7. [ĐHY 2000] Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Hướng dẫn. Xét ba trường hợp:

    • Có 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý: $C_{5}^{1}.C_{3}^{1}.C_{4}^{1}$
    • Có 2 nhà toán học nữ, 1 nhà vật lý: $C_{3}^{2}.C_{4}^{1}$
    • Có 1 nhà toán học nữ, 2 nhà vật lý: $C_{3}^{1}.C_{4}^{2}$

    Vậy có $C_{3}^{2}.C_{4}^{1}+C_{5}^{1}.C_{3}^{1}.C_{4}^{1}+C_{3}^{1}.C_{4}^{2}=90$ cách.

    Ví dụ 8. Có bao nhiêu số tự nhiên có 5 chữ số, chia hết cho 2 mà chữ số đầu tiên của nó cũng là số chẵn?

    Hướng dẫn.

    Vì đề bài không có yêu cầu các chữ số phải khác nhau nên chúng ta chọn thoải mái.

    • Bước 1. Chọn chữ số đứng đầu tiên, chữ số này phải khác $0$ và chẵn, nên có $4$ cách chọn (một trong các chữ số $2,4,6,8$).
    • Bước 2. Chọn chữ số đứng thứ hai là một trong các chữ số $0,1,2,…,9$ nên có $10$ cách.
    • Bước 3. Chọn chữ số đứng thứ ba là một trong các chữ số $0,1,2,…,9$ nên có $10$ cách.
    • Bước 4. Chọn chữ số đứng thứ tư là một trong các chữ số $0,1,2,…,9$ nên có $10$ cách.
    • Bước 5. Chọn chữ số đứng cuối cùng là một chữ số chẵn $0,2,4,6,8$ nên có $5$ cách.

    Theo quy tắc nhân, có $ 4\times 10^3\times 5=20000 $ số.

    Ví dụ 9. [B2005]Một đội thanh niên tình nguyện có 15 người, gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách phân công đội thanh niên tình nguyện đó về giúp đỡ 3 tỉnh miền núi, sao cho mỗi tỉnh có 4 nam 1 nữ.

    Hướng dẫn. Việc phân công đội thanh niên tình nguyện về ba tỉnh gồm các bước:

    • Phân công các thanh niên tình nguyện về tỉnh thứ nhất: Có $C_{3}^{1}C_{12}^{4}$ cách.
    • Phân công các thanh niên tình nguyện về tỉnh thứ hai: Có $C_{2}^{1}C_{8}^{4}$ cách.
    • Phân công các thanh niên tình nguyện về tỉnh thứ ba: Có $C_{1}^{1}C_{4}^{4}$ cách.

    Theo quy tắc nhân, có có: $C_{3}^{1}C_{12}^{4}$.$C_{2}^{1}C_{8}^{4}$.$C_{1}^{1}C_{4}^{4}$=207900 cách phân công đội thanh niên tình nguyện về 3 tỉnh thỏa mãn yêu cầu bài toán.

    Ví dụ 10. [B2004] Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu hỏi trung bình, 15 câu hỏi dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ 3 loại câu hỏi (khó, trung bình, dễ) và số câu hỏi dễ không ít hơn 2?

    Hướng dẫn.  Mỗi đề kiểm tra phải có số câu dễ là 2 hoặc 3, nên ta có ba phương án:

    • Đề có 2 câu dễ, 02 câu trung bình, 01 câu khó, thì có số cách chọn là: $C_{15}^{2}.C_{10}^{2}.C_{5}^{1}=23625$
    • Đề có 2 câu dễ, 01 câu trung bình, 02 câu khó, thì có số cách chọn là: $C_{15}^{2}.C_{10}^{1}.C_{5}^{2}=10500$
    • Đề có 3 câu dễ, 01 câu trung bình, 01 câu khó, thì có số cách chọn là: $C_{15}^{3}.C_{10}^{1}.C_{5}^{1}=22750$

    Theo quy tắc cộng, số đề kiểm tra có thể lập được là: $ 23625+10500+22750=56875. $

    Ví dụ 11. [CĐ2004] Một lớp học có 30 học sinh, trong đó có 3 cán bộ lớp. Hỏi có bao nhiêu cách để chọn 3 học sinh làm nhiệm vụ trực tuần sao cho trong 3 em đó luôn có cán bộ lớp?

    Hướng dẫn.  Chọn 3 học sinh, để đảm bảo luôn có cán bộ lớp ta xét 3 trường hợp:

    • Có 1 cán bộ lớp: Có $ C^1_3.C^2_{27}=1053 $ cách.
    • Có 2 cán bộ lớp: Có $ C^2_3.C^1_{27}=81 $ cách.
    • Có 3 cán bộ lớp: Có $ C^3_3=1 $ cách.

    Theo quy tắc cộng, ta có $ 1053+81+1=1135 $ cách chọn 3 học sinh thỏa mãn yêu cầu.

    Khi bài toán xuất hiện các cụm từ: {có ít nhất, luôn có…} ta thường dùng {phương pháp đếm gián tiếp!} Sau đây là một số ví dụ:
    Ví dụ 12. [CĐ2004] Một lớp học có 30 học sinh, trong đó có 3 cán bộ lớp. Hỏi có bao nhiêu cách để chọn 3 học sinh làm nhiệm vụ trực tuần sao cho trong 3 em đó luôn có cán bộ lớp?

    Hướng dẫn.  Chúng ta sẽ giải lại bài toán này theo phương pháp đếm gián tiếp.

    • Mỗi cách chọn ngẫu nhiên 3 học sinh từ lớp có 30 học sinh là một tổ hợp chập 3 của 30 phần tử. Do đó có $ C^3_{30}=4060 $ cách.
    • Mỗi cách chọn ngẫu nhiên 3 học sinh không có cán bộ lớp là một tổ hợp chập 3 của 27 phần tử còn lại. Do đó có $ C^3_{27}=2925 $ cách.
    • Suy ra số cách chọn 3 học sinh luôn có cán bộ lớp là $ 4060-2925=1135 $ cách.

    Để thấy tính hiệu quả của phương pháp này ta xét tiếp các ví dụ sau:
    Ví dụ 13. Một nhóm 15 học sinh có 7 nam và 8 nữ. Chọn ra 5 người sao cho trong đó có ít nhất 1 nữ. Hỏi có bao nhiêu cách?

    Hướng dẫn.  Nếu chọn cách tính trực tiếp, chia thành các trường hợp có 1 nữ, 2 nữ, 3 nữ… 5 nữ thì sẽ rất cồng kềnh, phức tạp. Nhưng nếu chọn phương pháp tính gián tiếp, ta xem có bao nhiêu cách chọn {không có học sinh nữ } nào thì lời giải sẽ đơn giản hơn rất nhiều.

    • Chọn 5 học sinh từ 15 học sinh, có $ C^{5}_{15}=3003 $ cách.
    • Chọn 5 học sinh không có nữ thì có $C^5_7=21 $ cách.

    Do đó, số cách chọn 5 người sao cho trong đó có ít nhất 1 nữ là $ 3003-21=2982 $ cách.

    Ví dụ 14. [CĐ SPHN 2005] Trong một tổ học sinh của lớp 12A có 8 nam và 4 nữ. Thầy giáo muốn chọn ra 3 học sinh để làm trực nhật trong đó có ít nhất 1 học sinh nam. Hỏi thầy có bao nhiêu cách chọn?

    Hướng dẫn.  Có $ C^3_{12}-C^3_4=216 $ cách.

    Ví dụ 15.[D2006] Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ, sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy?

    Hướng dẫn.  Số cách chọn 4 học sinh trong 12 học sinh là $C_{12}^{4}=495$.

    Số cách chọn 4 em học sinh mà mỗi lớp ít nhất 01 em là:

    • Lớp A có 2 học sinh, lớp B và C có 01 học sinh: $C_{5}^{2}.C_{4}^{1}.C_{3}^{1}=120$
    • Lớp B có 2 học sinh, lớp A và C có 01 học sinh: $C_{5}^{1}.C_{4}^{2}.C_{3}^{1}=90$
    • Lớp C có 2 học sinh, lớp B và A có 01 học sinh: $C_{5}^{1}.C_{4}^{1}.C_{3}^{2}=60$

    Số cách chọn 4 em mà mỗi lớp ít nhất một em là: $ 120+90+60=270 $.

    Vậy số cách chọn phải tìm là: $ 495-270=225 $.

    Ví dụ 16. [Chuyên Nguyễn Huệ L3 2015] Một hoppj đựng 5 viên bi đỏ, 6 viên bi trắng và 7 viên bi vàng. Chọn ngẫu nhiên 4 viên bi từ hộp đó. Hỏi có bao nhiêu cách chọn không có đủ ba màu?

    Hướng dẫn.  Nếu tính trực tiếp thì phải chia rất nhiều trường hợp! Chọn ngẫu nhiên 4 viên bi từ 18 viên bi, có $ C^4_{18}=3060 $ cách. Để chọn đủ ba màu ta xét 3 trường hợp:

    • 1 đỏ, 1 trắng và 2 vàng: Có $ C^1_5.C^1_6.C^2_7=630 $ cách.
    • 1 đỏ, 2 trắng và 1 vàng: Có $ C^1_5.C^2_6.C^1_7=525 $ cách.
    • 2 đỏ, 1 trắng và 1 vàng: Có $ C^2_5.C^1_6.C^1_7=420 $ cách.

    Do đó, số cách chọn {không đủ ba màu là}: $ 3060-630-525-420=1485 $ cách.

    2.2. Chứng minh các đẳng thức tổ hợp

    Trong phần này, chúng ta chủ yếu sử dụng các công thức tính số tổ hợp, số hoán vị và 3 công thức sau:

    • $ n!=n\cdot (n-1)! = n(n-1)\cdot (n-1)!=… $
    • $ C^k_n=C^{n-k}_n $
    • $ C^k_n+C^{k+1}_n=C^{k+1}_{n+1} $

    Ví dụ 1. Tính giá trị các biểu thức sau:

    • $A=\dfrac{3!.7!}{4!.6!}$
    • $ B=\dfrac{(m+1)!}{m!}-\dfrac{(m+2)!}{(m+1)!}$
    • $C=\dfrac{6!}{3!.2!}\left( {{P}_{4}}+{{P}_{3}}{{P}_{5}}-{{P}_{2}}{{P}_{6}} \right)$

    Ví dụ 2. Chứng minh rằng:

    • $ P_n – P_{n-1} = (n – 1)P_{n-1} $
    • $\frac{1}{A_{n}^{2}}=\frac{1}{n-1}-\frac{1}{n}$
    • $\frac{{{n}^{2}}}{n!}=\frac{1}{(n-1)!}+\frac{1}{(n-2)!}$
    • ${{P}_{n}}=(n-1)\left( {{P}_{n-1}}+{{P}_{n-2}} \right)$
    • $k.C_{n}^{k}=n.C_{n-1}^{k-1}$
    • $A_{n}^{k}=k!.C_{n}^{k}$
    • $C_{n+1}^{p}=\frac{n+1}{p}C_{n}^{p-1}$
    • $A_{n+k}^{n+2}+A_{n+k}^{n+1}={{k}^{2}}.A_{n+k}^{n}$
    • $\frac{A_{n+4}^{n}}{{{P}_{n+2}}}-\frac{143}{4{{P}_{n}}}=\frac{4{{n}^{2}}+28n-95}{4.n!}$

    Ví dụ 3. Chứng minh rằng

    • $ P_k.A^2_{n+1}.A^2_{n+3}.A^2_{n+5}=n.k!.A^5_{n+5} $
    • $k(k-1)C_{n}^{k}=n(n-1)C_{n-2}^{k-2},\;( 2 < k < n)$
    • $C_{n}^{k}+3C_{n}^{k-1}+3C_{n}^{k-2}+C_{n}^{k-3}=C_{n+3}^{k},\; (3 \le k \le n)$
    • $C_{n}^{k}+4C_{n}^{k-1}+6C_{n}^{k-2}+4C_{n}^{k-3}+C_{n}^{k-4}=C_{n+4}^{k},\;(4 \le k \le n)$
    • $\frac{1}{A_{2}^{2}}+\frac{1}{A_{3}^{2}}+…+\frac{1}{A_{n}^{2}}=\frac{n-1}{n},\; n\ge 1$

    2.3. Phương trình, bất phương trình tổ hợp

    Chú ý khi giải phương trình, bất phương trình chứa các biểu thức công thức hoán vị, tổ hợp, chỉnh hợp cần có điều kiện xét trên tập số nguyên.

    Ví dụ 1. [CĐ GTVT 2007] Giải phương trình $ P_xC^2_x+36=6(P_x+C^2_x)$

    Hướng dẫn. Điều kiện: $ x\ge 2, x\in \mathbb{N}. $ Phương trình đã cho tương đương với
    \begin{align*}
    & x!\frac{x(x-1)}{2}+36=6(x!+\frac{x(x-1)}{2})\\
    \Leftrightarrow\;& (x!-6)(x^2-x-12)=0\\
    \Leftrightarrow\;& x=3,x=4.
    \end{align*}
    So sánh điều kiện được nghiệm của phương trình đã cho là $ x=3,x=4. $

    Ví dụ 2. Giải các phương trình

    • (CĐSP TP HCM 99) $C_{14}^{x}+C_{14}^{x+2}=2C_{14}^{x+1}$
    • $4.C_{n}^{3}=5.C_{n+1}^{2}$
    • $30{{P}_{n}}=14{{P}_{n-1}}+7A_{n+1}^{n-1}$
    • (ĐHNN HN 99) $C_{n}^{1}+6C_{n}^{2}+C_{n}^{3}=9{{n}^{2}}-14n$
    • $\frac{A_{n}^{4}}{A_{n+1}^{3}-C_{n}^{n-4}}=\frac{24}{23}$
    • $C_{x}^{1}+C_{x}^{2}+C_{x}^{3}=\frac{7}{2}x$

    Ví dụ 3. [D2005] Giải phương trình $ C^2{n+1}+2C^2{n+2}+2C^2{n+3}+C^2{n+4}=149 $

    Hướng dẫn. Biến đổi thành $ n^2+4n-45=0. $ Đáp số $ n=5. $

    Ví dụ 4. [BKHN-2000] Giải bất phương trình: $$\frac{1}{2}A_{2x}^{2}-A_{x}^{2}\le \frac{6}{x}C_{x}^{3}+10 $$

    Hướng dẫn. Điều kiện $ x\in \mathbb{N} $ và $ x\ge 3. $ Bất phương trình đã cho tương đương với
    \begin{align*}
    &\frac{\left( 2x-1 \right)2x}{2}-\left( x-1 \right)x\le \frac{6\left( x-2 \right)\left( x-1 \right)}{3!x}+10 \\
    \Leftrightarrow\;& 2x\left( 2x-1 \right)-x\left( x-2 \right)\le \left( x-2 \right)\left( x-1 \right)+10 \\
    \Leftrightarrow \;& x\le 4
    \end{align*}
    Kết hợp điều kiện, tìm được $ x=3 $ và $ x=4. $

    Ví dụ 5. [ĐH SP Tiền Giang 2006] Giải bất phương trình $ A^2_x+C^2_{x+1}\le 20 $

    Hướng dẫn. Điều kiện $ x\ge 2, x\in \mathbb{N}. $ Với điều kiện đó, bất phương trình tương đương với
    \begin{align*}
    & x(x-1)+\frac{(x+1)x}{2}\le 20\\
    \Leftrightarrow\;& 3x^2-x-40\le 0\\
    \Leftrightarrow\;& \frac{1-\sqrt{481}}{6}\le x\le \frac{1+\sqrt{481}}{6}
    \end{align*}
    Kết hợp điều kiện được đáp số $ x=2,x=3. $

    Ví dụ 6. Giải các bất phương trình

    • $14{{P}_{3}}.C_{n-1}^{n-3}<A_{n+1}^{4}$
    • $14{{P}_{3}}<\frac{A_{x+1}^{4}}{C_{x-1}^{x-3}}$
    • $\frac{A_{x+4}^{4}}{(x+2)!}<\frac{15}{(x-1)!}$
    • $\frac{1}{2}A_{2n}^{2}-A_{n}^{2}-\frac{6}{n}C_{n}^{3}\le 10$
    • (ĐHHH 99) $\frac{C_{n-1}^{n-3}}{A_{n+1}^{4}}<\dfrac{1}{14{{P}_{3}}}$
    • (TN04-05) $ C^n_{n+3}>\frac{5}{2}A^2_n $

    Ví dụ 7. [TN2003-2004] Giải bất phương trình $ \frac{P_{n+5}}{(n-k)!}\le 60A^{k+2}_{n+3} $

    Hướng dẫn. Điều kiện $ n\ge k\ge -2; n,k\in \mathbb{Z}. $ Biến đổi bất phương trình thành \[ (n+5)(n+4)(n-k+1)\le 60 \]

    • Với $ n\ge 4 $ bất phương trình vô nghiệm.
    • Với $ n\in\{0,1,2,3\} $ tìm được các nghiệm $ (n,k) $ của bất phương trình là $ (0,0), (1,0),(1,1),(2,2),(3,3). $

    Ví dụ 8. Giải các hệ phương trình

    • $\left\{ \begin{array}{l} 3C_{{x}}^{y}=C_{x+2}^{y} \\ 24C_{x}^{y}=A_{x}^{y} \end{array} \right.$
    • (BK01)$\left\{ \begin{array}{l} 2A_{x}^{y}+5C_{x}^{y}=90 \\ 5A_{x}^{y}-2C_{x}^{y}=80\end{array} \right.$
    • $\left\{ \begin{array}{l} 5C_{x+1}^{y}=6C_{x}^{y+1} \\ C_{x+1}^{y}=3C_{x}^{y-1} \end{array} \right.$

    Một số tài liệu tiếng Anh về Hoán vị – Tổ hợp – Chỉnh hợp hay: